new instruction to ARM and AArch64 targets and several system registers.
Patch by: Roger Ferrer Ibanez and Oliver Stannard
Differential Revision: http://reviews.llvm.org/D20282
llvm-svn: 271670
This change implements the transformation in processInstruction() for the
LDR rt, =expression to MOV rt, expression when the expression can be evaluated
and can fit into the immediate field of the MOV or a MVN.
Across the ARM and Thumb instruction sets there are several cases to consider,
each with a different range of representatble constants.
In ARM we have:
* Modified immediate (All ARM architectures)
* MOVW (v6t2 and above)
In Thumb we have:
* Modified immediate (v6t2, v7m and v8m.mainline)
* MOVW (v6t2, v7m, v8.mainline and v8m.baseline)
* Narrow Thumb MOV that can be used in an IT block (non flag-setting)
If the immediate fits any of the available alternatives then we make the transformation.
Fixes 25722.
Patch by Peter Smith.
llvm-svn: 269354
This change adds a new constant pool kind to ARMOperand. When parsing the
operand for =immediate we create an instance of this operand rather than
creating a constant pool entry and rewriting the operand.
As the new operand kind is only created for ldr rt,= we can make ldr rt,=
an explicit pseudo instruction in ARM, Thumb and Thumb2
The pseudo instruction is expanded in processInstruction(). This creates the
constant pool and transforms the pseudo instruction into a pc-relative ldr to
the constant pool.
There are no functional changes and no modifications needed to existing tests.
Required by the patch that fixes PR25722.
Patch by Peter Smith.
llvm-svn: 269352
Fix "Logic error" warnings of the type "Called C++ object pointer is
null" reported by Clang Static Analyzer.
Patch by Apelete Seketeli.
llvm-svn: 269285
When we see a .arch or .cpu directive, we should try to avoid switching
ARM/Thumb mode if possible.
If we do have to switch modes, we also need to emit the correct mapping
symbol for the new ISA. We did not do this previously, so could emit
ARM code with Thumb mapping symbols (or vice-versa).
The GAS behaviour is to always stay in the same mode, and to emit an
error on any instructions seen when the current mode is not available on
the current target. We can't represent that situation easily (we assume
that Thumb mode is available if ModeThumb is set), so we differ from the
GAS behaviour when switching to a target that can't support the old
mode. I've added a warning for when this implicit mode-switch occurs.
Differential Revision: http://reviews.llvm.org/D18955
llvm-svn: 265936
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861
This patch was originally committed as r257884, but was reverted due to windows
failures. The cause of these failures has been fixed under r258677, hence
re-committing the original patch.
llvm-svn: 258682
This patch was originally committed as r257883, but was reverted due to windows
failures. The cause of these failures has been fixed under r258677, hence
re-committing the original patch.
llvm-svn: 258681
This was originally committed as r255762, but reverted as it broke windows
bots. Re-commitiing the exact same patch, as the underlying cause was fixed by
r258677.
ARMv8.2-A adds 16-bit floating point versions of all existing VFP
floating-point instructions. This is an optional extension, so all of
these instructions require the FeatureFullFP16 subtarget feature.
The assembly for these instructions uses S registers (AArch32 does not
have H registers), but the instructions have ".f16" type specifiers
rather than ".f32" or ".f64". The top 16 bits of each source register
are ignored, and the top 16 bits of the destination register are set to
zero.
These instructions are mostly the same as the 32- and 64-bit versions,
but they use coprocessor 9 rather than 10 and 11.
Two new instructions, VMOVX and VINS, have been added to allow packing
and extracting two 16-bit floats stored in the top and bottom halves of
an S register.
New fixup kinds have been added for the PC-relative load and store
instructions, but no ELF relocations have been added as they have a
range of 512 bytes.
Differential Revision: http://reviews.llvm.org/D15038
llvm-svn: 258678
# The first commit's message is:
Revert "[ARM] Add DSP build attribute and extension targeting"
This reverts commit b11cc50c0b4a7c8cdb628abc50b7dc226ff583dc.
# This is the 2nd commit message:
Revert "[ARM] Add new system registers to ARMv8-M Baseline/Mainline"
This reverts commit 837d08454e3e5beb8581951ac26b22fa07df3cd5.
llvm-svn: 257916
ARMv8.2-A adds 16-bit floating point versions of all existing SIMD
floating-point instructions. This is an optional extension, so all of
these instructions require the FeatureFullFP16 subtarget feature.
Note that VFP without SIMD is not a valid combination for any version of
ARMv8-A, but I have ensured that these instructions all depend on both
FeatureNEON and FeatureFullFP16 for consistency.
Differential Revision: http://reviews.llvm.org/D15039
llvm-svn: 255764
ARMv8.2-A adds 16-bit floating point versions of all existing VFP
floating-point instructions. This is an optional extension, so all of
these instructions require the FeatureFullFP16 subtarget feature.
The assembly for these instructions uses S registers (AArch32 does not
have H registers), but the instructions have ".f16" type specifiers
rather than ".f32" or ".f64". The top 16 bits of each source register
are ignored, and the top 16 bits of the destination register are set to
zero.
These instructions are mostly the same as the 32- and 64-bit versions,
but they use coprocessor 9 rather than 10 and 11.
Two new instructions, VMOVX and VINS, have been added to allow packing
and extracting two 16-bit floats stored in the top and bottom halves of
an S register.
New fixup kinds have been added for the PC-relative load and store
instructions, but no ELF relocations have been added as they have a
range of 512 bytes.
Differential Revision: http://reviews.llvm.org/D15038
llvm-svn: 255762
The values in this field are compared against getAvailableFeatures()
which returns an uint64_t. This was causing problems in an internal
branch.
llvm-svn: 254462
Add ARMv8.2-A to TargetParser, so that it can be used by the clang
command-line options and the .arch directive.
Most testing of this will be done in clang, checking that the
command-line options that this enables work.
Differential Revision: http://reviews.llvm.org/D15037
llvm-svn: 254400
Storing the source location of the expression that created a constant pool
entry allows us to emit better error messages if we later discover that the
expression cannot be represented by a relocation.
Differential Revision: http://reviews.llvm.org/D14646
llvm-svn: 253220
The MCValue class can store a SMLoc to allow better error messages to be
emitted if an error is detected after parsing. The ARM and AArch64 assembly
parsers were not setting this, so error messages did not have source
information.
Differential Revision: http://reviews.llvm.org/D14645
llvm-svn: 253219
This allows for accurate architecture targeting as well as removing
duplicate information (hardcoded feature strings) from MCTargetDesc.
llvm-svn: 253196
MCRelaxableFragment previously kept a copy of MCSubtargetInfo and
MCInst to enable re-encoding the MCInst later during relaxation. A copy
of MCSubtargetInfo (instead of a reference or pointer) was needed
because the feature bits could be modified by the parser.
This commit replaces the MCSubtargetInfo copy in MCRelaxableFragment
with a constant reference to MCSubtargetInfo. The copies of
MCSubtargetInfo are kept in MCContext, and the target parsers are now
responsible for asking MCContext to provide a copy whenever the feature
bits of MCSubtargetInfo have to be toggled.
With this patch, I saw a 4% reduction in peak memory usage when I
compiled verify-uselistorder.lto.bc using llc.
rdar://problem/21736951
Differential Revision: http://reviews.llvm.org/D14346
llvm-svn: 253127
MCSubtargetInfo in the subclasses into MCTargetAsmParser and define a
member function getSTI.
This is done in preparation for making changes to shrink the size of
MCRelaxableFragment. (see http://reviews.llvm.org/D14346).
llvm-svn: 253124
Summary:
This patch handles assembly and disassembly, but not codegen, as of yet.
Additionally, it fixes a bug whereby SP and PC as shifted-reg operands
were treated as predictable in ARMv7 Thumb; and it enables the tests
for invalid and unpredictable instructions to run on both ARMv7 and ARMv8.
Reviewers: jmolloy, rengolin
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D14141
llvm-svn: 251516
As Richard Barton observed at http://reviews.llvm.org/D12937#inline-107121
TargetParser in LLVM has insufficient support for ARMv6Z and ARMv6ZK.
In particular, there were no tests for TrustZone being supported in these
architectures.
The patch clears a FIXME: left by Saleem Abdulrasool in r201471, and fixes
his test case which hadn't really been testing what it was claiming to test.
Differential Revision: http://reviews.llvm.org/D13236
llvm-svn: 248921
Currently, the availability of DSP instructions (ACLE 6.4.7) is handled in a
hand-rolled tricky condition block in tools/clang/lib/Basic/Targets.cpp, with
a FIXME: attached.
This patch changes the handling of +t2dsp to be in line with other
architecture extensions.
Following a revert of r248152 and new review comments, this patch also includes
renaming FeatureDSPThumb2 -> FeatureDSP, hasThumb2DSP() -> hasDSP(), etc.
The spelling of "t2dsp" is preserved, pending a further investigation of its
possible external usage.
Differential Revision: http://reviews.llvm.org/D12937
llvm-svn: 248519
This reverts commit r245047.
It was failing on the darwin bots. The problem was that when running
./bin/llc -march=msp430
llc gets to
if (TheTriple.getTriple().empty())
TheTriple.setTriple(sys::getDefaultTargetTriple());
Which means that we go with an arch of msp430 but a triple of
x86_64-apple-darwin14.4.0 which fails badly.
That code has to be updated to select a triple based on the value of
march, but that is not a trivial fix.
llvm-svn: 245062
Other than some places that were handling unknown as ELF, this should
have no change. The test updates are because we were detecting
arm-coff or x86_64-win64-coff as ELF targets before.
It is not clear if the enum should live on the Triple. At least now it lives
in a single location and should be easier to move somewhere else.
llvm-svn: 245047
Various targets use std::swap on specific MCAsmOperands (ARM and
possibly Hexagon as well). It might be helpful to mark those subclasses
as final, to ensure that the availability of move/copy operations can't
lead to slicing. (same sort of requirements as the non-vitual dtor -
protected or a final class)
llvm-svn: 243820
Disallow all mutation of `MCSubtargetInfo` expect the feature bits.
Besides deleting the assignment operators -- which were dead "code" --
this restricts `InitMCProcessorInfo()` to subclass initialization
sequences, and exposes a new more limited function called
`setDefaultFeatures()` for use by the ARMAsmParser `.cpu` directive.
There's a small functional change here: ARMAsmParser used to adjust
`MCSubtargetInfo::CPUSchedModel` as a side effect of calling
`InitMCProcessorInfo()`, but I've removed that suspicious behaviour.
Since the AsmParser shouldn't be doing any scheduling, there shouldn't
be any observable change...
llvm-svn: 241961
Remove all calls to `MCSubtargetInfo::InitCPUSched()` and merge its body
into the only relevant caller, `MCSubtargetInfo::InitMCProcessorInfo()`.
We were only calling the former after explicitly calling the latter with
the same CPU; it's confusing to have both methods exposed.
Besides a minor (surely unmeasurable) speedup in ARM and X86 from
avoiding running the logic twice, no functionality change.
llvm-svn: 241956
represented by uint64_t, this patch replaces these
usages with the FeatureBitset (std::bitset) type.
Differential Revision: http://reviews.llvm.org/D10542
llvm-svn: 241058
According to the documentation, .thumb_set is 'the equivalent of a .set directive'.
We didn't have equivalent behaviour in terms of all the errors we could throw, for
example, when a symbol is redefined.
This change refactors parseAssignment so that it can be used by .set and .thumb_set
and implements tests for .thumb_set for all the errors thrown by that method.
Reviewed by Rafael Espíndola.
llvm-svn: 240318
Add getFPUFeatures to TargetParser, which gets the list of subtarget features
that are enabled/disabled for each FPU, and use it when handling the .fpu
directive.
No functional change in this commit, though clang will start behaving
differently once it starts using this.
Differential Revision: http://reviews.llvm.org/D10237
llvm-svn: 239150
The plan was to move the whole table into the already existing ArchExtNames
but some fields depend on a table-generated file, and we don't yet have this
feature in the generic lib/Support side.
Once the minimum target-specific table-generated files are available in a
generic fashion to these libraries, we'll have to keep it in the ASM parser.
llvm-svn: 238651
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first several times this was committed (e.g. r229831, r233055), it caused several buildbot failures.
Apparently the reason for most failures was both clang and gcc's inability to deal with large numbers (> 10K) of bitset constructor calls in tablegen-generated initializers of instruction info tables.
This should now be fixed.
llvm-svn: 238192
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first two times this was committed (r229831, r233055), it caused several buildbot failures.
At least some of the ARM and MIPS ones were due to gcc/binutils issues, and should now be fixed.
llvm-svn: 237234
sys/time.h on Solaris (and possibly other systems) defines "SEC" as "1"
using a cpp macro. The result is that this fails to compile.
Fixes https://llvm.org/PR23482
llvm-svn: 237112
This new class in a global context contain arch-specific knowledge in order
to provide LLVM libraries, tools and projects with the ability to understand
the architectures. For now, only FPU, ARCH and ARCH extensions on ARM are
supported.
Current behaviour it to parse from free-text to enum values and back, so that
all users can share the same parser and codes. This simplifies a lot both the
ASM/Obj streamers in the back-end (where this came from), and the front-end
parsers for command line arguments (where this is going to be used next).
The previous implementation, using .def/.h includes is deprecated due to its
inflexibility to be built without the backend support and for being too
cumbersome. As more architectures join this scheme, and as more features of
such architectures are added (such as hardware features, type sizes, etc) into
a full blown TargetDescription class, having a set of classes is the most
sane implementation.
The ultimate goal of this refactor both LLVM's and Clang's target description
classes into one unique interface, so that we can de-duplicate and standardise
the descriptions, as well as make it available for other front-ends, tools,
etc.
The FPU parsing for command line options in Clang has been converted to use
this new library and a number of aliases were added for compatibility:
* A bogus neon-vfpv3 alias (neon defaults to vfp3)
* armv5/v6
* {fp4/fp5}-{sp/dp}-d16
Next steps:
* Port Clang's ARCH/EXT parsing to use this library.
* Create a TableGen back-end to generate this information.
* Run this TableGen process regardless of which back-ends are built.
* Expose more information and rename it to TargetDescription.
* Continue re-factoring Clang to use as much of it as possible.
llvm-svn: 236900
BXJ was incorrectly said to be unsupported in ARMv8-A. It is not
supported in the A64 instruction set, but it is supported in the T32
and A32 instruction sets, because it's listed as an instruction in the
ARM ARM section F7.1.28.
Using SP as an operand to BXJ changed from UNPREDICTABLE to
PREDICTABLE in v8-A. This patch reflects that update as well.
This was found by MCHammer.
llvm-svn: 235024
v8.1a is renamed to architecture, following current entity naming approach.
Excess generic cpu is removed. Intended use: "generic" cpu with "v8.1a" subtarget feature
Reviewers: jmolloy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8767
llvm-svn: 233811
This reverts commit r233055.
It still causes buildbot failures (gcc running out of memory on several platforms, and a self-host failure on arm), although less than the previous time.
llvm-svn: 233068
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first time this was committed (r229831), it caused several buildbot failures.
At least some of the ARM ones were due to gcc/binutils issues, and should now be fixed.
Differential Revision: http://reviews.llvm.org/D8542
llvm-svn: 233055
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
Differential Revision: http://reviews.llvm.org/D7065
llvm-svn: 229831
The changes in r223113 (ARM modified-immediate syntax) have broken
instructions like:
mov r0, #~0xffffff00
The problem is that I've added a spurious range check on the immediate
operand to ensure that it lies between INT32_MIN and UINT32_MAX. While
this range check is correct in theory, it causes problems because the
operand is stored in an int64_t (by MC). So valid 32-bit constants like
\#~0xffffff00 become out of range. The solution is to simply remove this
range check. It is not possible to validate the range of the immediate
operand with the current setup because: 1) The operand is stored in an
int64_t by MC, 2) The immediate can be of the forms #imm, #-imm, #~imm
or even #((~imm)) etc. So we just chop the value to 32 bits and use it.
Also noted that the original range check was note tested by any of the
unit tests. I've added a new test to cover #~imm kind of operands.
Change-Id: I411e90d84312a2eff01b732bb238af536c4a7599
llvm-svn: 228920
This is a bug that was caused due to storing the feature bitset in a 32-bit
variable when it is a 64-bit mask, discarding the top half of the feature set.
llvm-svn: 228151
The ARM assembler allows register alias redefinitions as long as it
targets the same register. r222319 broke that. In the AArch64 case
it would just produce a new warning, but in the ARM case it would
error out on previously accepted assembler.
llvm-svn: 228109
This adds some comments and splits the flag calculation on type boundaries to
make the table more readable. Addresses some post-commit review comments to SVN
r227603. NFC.
llvm-svn: 227670
If the original FPU specification involved a restricted VFP unit (d16), ensure
that we reset the functionality when we encounter a new FPU type. In
particular, if the user specified vfpv3-d16, but switched to a VFPv3 (which has
32 double precision registers), we would fail to reset the D16 feature, and
treat it as being equivalent to vfpv3-d16.
llvm-svn: 227603
The FPU directive permits the user to switch the target FPU, enabling
instructions that would be otherwise unavailable. However, when configuring the
new subtarget features, we would not enable the implied functions for newer
FPUs. This would result in invalid rejection of valid input. Ensure that we
inherit the implied FPU functionality when enabling newer versions of the FPU.
Fortunately, these are mostly hierarchical, unlike the CPUs.
Addresses PR22395.
llvm-svn: 227584
AAELF specifies a number of ELF specific relocation types which have custom
prefixes for the symbol reference. Switch the parser to be more table driven
with an idea of file formats for which they apply. NFC.
llvm-svn: 225758
The change in r225266 was reviewed under D6722. But the commit r225266 has a
typo, causing some MCHammer failures. This patch fixes it.
Change-Id: I573efcff25003af7478ac02548ebbe929fc7f5fd
llvm-svn: 225347
No functional changes. Support for ARM's modified immediate syntax was added
in r223113 and r223115 (review: D6408). That patch introduced the mod_imm*
tblegen definitions which renders the existing so_imm* definitions redundant.
This patch gets rid of them completely.
Reviewed as: D6722
llvm-svn: 225266
Tag_compatibility takes two arguments, but before this patch it would
erroneously accept just one, it now produces an error in that case.
Change-Id: I530f918587620d0d5dfebf639944d6083871ef7d
llvm-svn: 225167
Make sure they all have llvm_unreachable on the default path out of the switch. Remove unnecessary "default: break". Remove a 'return' after unreachable. Fix some indentation.
llvm-svn: 225114
Fix an off-by-one access introduced in 224502 for push.w and pop.w with single
register operands. Add test cases for both scenarios.
Thanks to Asiri Rathnayake for pointing out the failure!
llvm-svn: 224521
The ARM Architecture Reference Manual states the following:
LDM{,IA,DB}:
The SP cannot be in the list.
The PC can be in the list.
If the PC is in the list:
• the LR must not be in the list
• the instruction must be either outside any IT block, or the last
instruction in an IT block.
POP:
The PC can be in the list.
If the PC is in the list:
• the LR must not be in the list
• the instruction must be either outside any IT block, or the last
instruction in an IT block.
PUSH:
The SP and PC can be in the list in ARM instructions, but not in Thumb
instructions.
STM:{,IA,DB}:
The SP and PC can be in the list in ARM instructions, but not in Thumb
instructions.
llvm-svn: 224502
Instructions of the form [ADD Rd, pc, #imm] are manually aliased
in processInstruction() to use ADR. To accomodate this, mod_imm handling
had to be tweaked a bit. Turns out it was the manual aliasing that must
be tweaked to accommodate mod_imms instead. More information about the
parsed instruction is available at the point where processInstruction()
is invoked, which makes it easier to detect a mod_imm at that point rather
than trying to detect a potential alias when a mod_imm is being prepped.
Added a test case and fixed some white spaces as well.
llvm-svn: 223772
r223113 added support for ARM modified immediate assembly syntax. Which
assumes all immediate operands are prefixed with a '#'. This assumption
is wrong as per the ARMARM - which recommends that all '#' characters be
treated optional. The current patch fixes this regression and adds a test
case. A follow-up patch will expand the test coverage to other instructions.
llvm-svn: 223381
r223113 added support for ARM modified immediate assembly syntax. That patch
has broken support for immediate expressions, as in:
add r0, #(4 * 4)
It wasn't caught because we don't have any tests for this feature. This patch
fixes this regression and adds test cases.
llvm-svn: 223366
Previously .cpu directive in ARM assembler didnt switch to the new CPU and
therefore acted as a nop. This implemented real action for .cpu and eg.
allows to assembler FreeBSD kernel with -integrated-as.
llvm-svn: 223147
Certain ARM instructions accept 32-bit immediate operands encoded as a 8-bit
integer value (0-255) and a 4-bit rotation (0-30, even). Current ARM assembly
syntax support in LLVM allows the decoded (32-bit) immediate to be specified
as a single immediate operand for such instructions:
mov r0, #4278190080
The ARMARM defines an extended assembly syntax allowing the encoding to be made
more explicit, as in:
mov r0, #255, #8 ; (same 32-bit value as above)
The behaviour of the two instructions can be different w.r.t flags, which is
documented under "Modified immediate constants" in ARMARM. This patch enables
support for this extended syntax at the MC layer.
llvm-svn: 223113