When clang-format encounters a syntax error, it will not format that
line; we're now using the same mechanism we're already using in emacs to
show a helpful error message to the user.
llvm-svn: 238823
Complains:
/home/buildbots/sanitizerslave1/sanitizer-ppc64-1/build/llvm/tools/clang/tools/c-index-test/c-index-test.c:829:30: error: format specifies type 'long' but the argument has type 'long long' [-Werror,-Wformat]
I, TAK, clang_Cursor_getTemplateArgumentValue(Cursor, I));
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I'm not sure now how this should be fixed. %lld is non-standard
and not accepted by mingw on Windows while PRId64 is bad for this bot.
Is long long longer than 64 bits here? if not, why is PRId64
incompatible with it? something seems wrong.
Probably all the datatypes should be replaced to unsigned or uint64_t
depending upin requirements instead of the non standard long long.
llvm-svn: 237346
'schedule' clause for combined directives requires additional processing. Special helper variable is generated, that is captured in the outlined parallel region for 'parallel for' region. This captured variable is used to store chunk expression from the 'schedule' clause in this 'parallel for' region.
llvm-svn: 237100
This reverts commit 236854, which caused clang-format to always print
'{ "IncompleteFormat": false }' at the top of an incompletely formatted file.
This output causes problems e.g. in Polly's automatic formatting checks. Daniel
tried to fix this in 236867, but this fix had to be reverted due to buildbot
failures. I revert this change as well for now as it is Friday night and
unlikely to be fixed immediately.
llvm-svn: 236908
Propagate the 'incomplete-format' state back through clang-format's command
line interace and adapt the emacs integration to show a better result.
llvm-svn: 236854
This reverts commit r236423 and its followup r236533, as indiscriminate
quoting makes for too much quoting (and clang doesn't like both '"-c"'
and -D"FOO=bar").
llvm-svn: 236562
This fixes errors that occur if a path to the default compiler has spaces or if an argument with spaces is given to compiler (e.g. via -I). (http://reviews.llvm.org/D9357)
llvm-svn: 236423
clang::MacroDefinition now models the currently-defined value of a macro. The
previous MacroDefinition type, which represented a record of a macro definition
directive for a detailed preprocessing record, is now called MacroDefinitionRecord.
llvm-svn: 236400
Modules builds fundamentally have a non-linear macro history. In the interest
of better source fidelity, represent the macro definition information
faithfully: we have a linear macro directive history within each module, and at
any point we have a unique "latest" local macro directive and a collection of
visible imported directives. This also removes the attendent complexity of
attempting to create a correct MacroDirective history (which we got wrong
in the general case).
No functionality change intended.
llvm-svn: 236176
With this patch, clang-format.py will search and use existing .clang-format
file if there is one and fallback to the specific format style if
not. It should cover the projects which don't have .clang-format
files in their source. As the option fallback-style is available in
clang 3.5 or later, it is safe to use.
Patch by "Chilledheart" (http://reviews.llvm.org/D8489).
llvm-svn: 235080
Emits the following code for the clause at the beginning of the outlined function for implicit threads:
if (<not a master thread>) {
...
<thread local copy of var> = <master thread local copy of var>;
...
}
<sync point>;
Checking for a non-master thread is performed by comparing of the address of the thread local variable with the address of the master's variable. Master thread always uses original variables, so you always know the address of the variable in the master thread.
Differential Revision: http://reviews.llvm.org/D9026
llvm-svn: 235075
#pragma omp for lastprivate(<var>)
for (i = a; i < b; ++b)
<BODY>;
This construct is translated into something like:
<last_iter> = alloca i32
<lastprivate_var> = alloca <type>
<last_iter> = 0
; No initializer for simple variables or a default constructor is called for objects.
; For arrays perform element by element initialization by the call of the default constructor.
...
OMP_FOR_START(...,<last_iter>, ..); sets <last_iter> to 1 if this is the last iteration.
<BODY>
...
OMP_FOR_END
if (<last_iter> != 0) {
<var> = <lastprivate_var> ; Update original variable with the lastprivate value.
}
call __kmpc_cancel_barrier() ; an implicit barrier to avoid possible data race.
Differential Revision: http://reviews.llvm.org/D8658
llvm-svn: 235074
If there is at least one 'copyprivate' clause is associated with the single directive, the following code is generated:
```
i32 did_it = 0; \\ for 'copyprivate' clause
if(__kmpc_single(ident_t *, gtid)) {
SingleOpGen();
__kmpc_end_single(ident_t *, gtid);
did_it = 1; \\ for 'copyprivate' clause
}
<copyprivate_list>[0] = &var0;
...
<copyprivate_list>[n] = &varn;
call __kmpc_copyprivate(ident_t *, gtid, <copyprivate_list_size>,
<copyprivate_list>, <copy_func>, did_it);
...
void<copy_func>(void *LHSArg, void *RHSArg) {
Dst = (void * [n])(LHSArg);
Src = (void * [n])(RHSArg);
Dst[0] = Src[0];
... Dst[n] = Src[n];
}
```
All list items from all 'copyprivate' clauses are gathered into single <copyprivate list> (<copyprivate_list_size> is a size in bytes of this list) and <copy_func> is used to propagate values of private or threadprivate variables from the 'single' region to other implicit threads from outer 'parallel' region.
Differential Revision: http://reviews.llvm.org/D8410
llvm-svn: 232932
The linear variable is privatized (similar to 'private') and its
value on current iteration is calculated, similar to the loop
counter variables.
Differential revision: http://reviews.llvm.org/D8375
llvm-svn: 232890