Having this function in common seems to trigger a lot of unrelated
test failures. Given that this isn't really common code anyway,
move this to a new linux-specific lsan file.
llvm-svn: 298878
Summary:
Adds a new cmake flag 'COMPILER_RT_ENABLE_LSAN_OSX', which enables lsan
compilation and is turned off by default. Patches to fix build errors
when this flag is enabled will be uploaded soon.
This is part of an effort to port LSan to OS X, but LSan on OS X does not
currently work or pass tests currently.
Reviewers: kubamracek, kcc, glider, alekseyshl
Reviewed By: kubamracek
Subscribers: danalbert, srhines, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D29783
llvm-svn: 295012
Summary:
This patch provides stubs for all of the lsan platform-specific
functions which need to be implemented for darwin. Currently
all of these functions are stubs, for the purpose of fixing
compilation.
Reviewers: kcc, glider, kubamracek
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D29784
llvm-svn: 294983
Summary:
The lsan cmake configuration failed when targeting more
than one architecture, because it would attempt to create multiple
components with the same name. Ensure that only one lsan component
is ever created.
Reviewers: beanz, bogner
Subscribers: dberris, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D28151
llvm-svn: 291294
This patch builds on LLVM r279776.
In this patch I've done some cleanup and abstracted three common steps runtime components have in their CMakeLists files, and added a fourth.
The three steps I abstract are:
(1) Add a top-level target (i.e asan, msan, ...)
(2) Set the target properties for sorting files in IDE generators
(3) Make the compiler-rt target depend on the top-level target
The new step is to check if a command named "runtime_register_component" is defined, and to call it with the component name.
The runtime_register_component command is defined in llvm/runtimes/CMakeLists.txt, and presently just adds the component to a list of sub-components, which later gets used to generate target mappings.
With this patch a new workflow for runtimes builds is supported. The new workflow when building runtimes from the LLVM runtimes directory is:
> cmake [...]
> ninja runtimes-configure
> ninja asan
The "runtimes-configure" target builds all the dependencies for configuring the runtimes projects, and runs CMake on the runtimes projects. Running the runtimes CMake generates a list of targets to bind into the top-level CMake so subsequent build invocations will have access to some of Compiler-RT's targets through the top-level build.
Note: This patch does exclude some top-level targets from compiler-rt libraries because they either don't install files (sanitizer_common), or don't have a cooresponding `check` target (stats).
llvm-svn: 279863
Summary:
This patch is a refactoring of the way cmake 'targets' are grouped.
It won't affect non-UI cmake-generators.
Clang/LLVM are using a structured way to group targets which ease
navigation through Visual Studio UI. The Compiler-RT projects
differ from the way Clang/LLVM are grouping targets.
This patch doesn't contain behavior changes.
Reviewers: kubabrecka, rnk
Subscribers: wang0109, llvm-commits, kubabrecka, chrisha
Differential Revision: http://reviews.llvm.org/D21952
llvm-svn: 275111
Summary:
Rather than having to add new "experimental" options each time someone wants to work on bringing a sanitizer to a new platform, this patch makes options for all of them.
The default values for the options are set by the platform checks that would have enabled them, but they can be overridden on or off.
Reviewers: kubabrecka, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14846
llvm-svn: 255170
Summary: This refactoring moves much of the Apple-specific behavior into a function in AddCompilerRT. The next cleanup patch will remove more of the if(APPLE) checks in the outlying CMakeLists.
This patch adds a bunch of new functionality to add_compiler_rt_runtime so that the target names don't need to be reconstructed outside the call. It also updates some of the call sites to exercise the new functionality, but does not update all uses fully. Subsequent patches will further update call sites and move to using the new features.
Reviewers: filcab, bogner, kubabrecka, zaks.anna, glider, samsonov
Subscribers: beanz, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D12292
llvm-svn: 245970
Summary:
Use CMake's cmake_parse_arguments() instead.
It's called in a slightly different way, but supports all our use cases.
It's in CMake 2.8.8, which is our minimum supported version.
CMake 3.0 doc (roughly the same. No direct link to 2.8.8 doc):
http://www.cmake.org/cmake/help/v3.0/module/CMakeParseArguments.html?highlight=cmake_parse_arguments
Since I was already changing these calls, I changed ARCH and LIB into
ARCHS and LIBS to make it more clear that they're lists of arguments.
Reviewers: eugenis, samsonov, beanz
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10529
llvm-svn: 240120
This change makes cmake fail to even run on Darwin with errors
evaluating "$<TARGET_OBJECTS:RTInterception.x86_64>".
This reverts r239955
llvm-svn: 239985
Summary:
This change takes darwin-specific goop that was scattered around CMakeLists files and spread between add_compiler_rt_object_library and add_compiler_rt_darwin_object_library and moves it all under add_compiler_rt_object_library.
The goal of this is to try to push platform handling as low in the utility functions as possible.
Reviewers: rnk, samsonov
Reviewed By: rnk, samsonov
Subscribers: rnk, rsmith, llvm-commits
Differential Revision: http://reviews.llvm.org/D10250
llvm-svn: 239498
* Detect Android toolchain target arch and set correct runtime library name.
* Merged a lot of Android and non-Android code paths.
* Android is only supported in standalone build of compiler-rt now.
* Linking lsan-common in ASan-Android (makes lsan annotations work).
* Relying on -fsanitize=address linker flag when building tests (again,
unification with non-Android path).
* Runtime library moved from lib/asan to lib/linux.
llvm-svn: 218605
Summary: The patch supports both the clang cross-compiler and native compiler
Patch by Kumar Sukhani <Kumar.Sukhani@imgtec.com>
Test Plan:
Kumar had the following asan test results when compiled on a MIPS board:
Expected Passes : 96
Expected Failures : 2
Unsupported Tests : 84
Unexpected Passes : 4
Unexpected Failures: 19
The list of unexpected failures can be found in the review.
Reviewers: kcc, petarj, dsanders
Reviewed By: kcc
Subscribers: farazs, kcc, llvm-commits
Differential Revision: http://reviews.llvm.org/D4208
llvm-svn: 211587
You can expect the sanitizers to be built under any of the following conditions:
1) CMAKE_C_COMPILER is GCC built to cross-compile to ARM
2) CMAKE_C_COMPILER is Clang built to cross-compile to ARM (ARM is default target)
3) CMAKE_C_COMPILER is Clang and CMAKE_C_FLAGS contains -target and --sysroot
Differential Revision: http://reviews.llvm.org/D3794
llvm-svn: 209835
Soon there will be an option to build compiler-rt parts as shared libraries
on Linux. Extracted from http://llvm-reviews.chandlerc.com/D3042
by Yuri Gribov.
llvm-svn: 205183
Adding the ARM RT sources to the CMake files, and enabling some
sanitizers to also build on ARM. This is far from supported or
production quality, but enabling it to build will get us errors
that we can actually fix.
Having said that, the Compiler-RT and the Asan libraries are
know to work on some variations of ARM.
llvm-svn: 200546
No longer allow interceptors to be called during initialization, use the preinit
array (instead of initializing at the first call to an intercepted function) and
adopt the calloc() hack from ASan.
llvm-svn: 195642
CMake changes to build the ASan runtime for the iOS simulator. This is a universal library targeting the same architectures as the OSX ASan runtime does, thus the iossim version can't live in the same universal libclang_rt.asan_osx_dynamic.dylib
The difference between the OSX and iossim builds is in the -mios-simulator-version-min and -ios_simulator_version_min flags that tell Clang to compile and link iossim code.
The iossim runtime can only be built on a machine with both Xcode and the iOS Simulator SDK installed. If xcodebuild -version -sdk iphonesimulator Path returns a nonempty path, it is used when compiling and linking the iossim runtime.
llvm-svn: 194199