Rename AllVRegsAllocated to NoVRegs. This avoids the connotation of
running after register and simply describes that no vregs are used in
a machine function. With that we can simply compute the property and do
not need to dump/parse it in .mir files.
Differential Revision: http://reviews.llvm.org/D23850
llvm-svn: 279698
The names of the tablegen defs now match the names of the ISD nodes.
This makes the world a slightly saner place, as previously "fround" matched
ISD::FP_ROUND and not ISD::FROUND.
Differential Revision: https://reviews.llvm.org/D23597
llvm-svn: 279129
...and the two followup commits:
Revert "[Sparc][Leon] Missed resetting option flags from check-in 278489."
Revert "[Sparc][Leon] Errata fixes for various errata in different
versions of the Leon variants of the Sparc 32 bit processor."
This reverts commit r274856, r278489, and r278492.
llvm-svn: 278511
The nature of the errata are listed in the comments preceding the errata fix passes. Relevant unit tests are implemented for each of these.
These changes update older versions of these errata fixes with improvements to code and unit tests.
Differential Revision: https://reviews.llvm.org/D21960
llvm-svn: 278489
Some targets, notably AArch64 for ILP32, have different relocation encodings
based upon the ABI. This is an enabling change, so a future patch can use the
ABIName from MCTargetOptions to chose which relocations to use. Tested using
check-llvm.
The corresponding change to clang is in: http://reviews.llvm.org/D16538
Patch by: Joel Jones
Differential Revision: https://reviews.llvm.org/D16213
llvm-svn: 276654
Summary:
Instead, we take a single flags arg (a bitset).
Also add a default 0 alignment, and change the order of arguments so the
alignment comes before the flags.
This greatly simplifies many callsites, and fixes a bug in
AMDGPUISelLowering, wherein the order of the args to getLoad was
inverted. It also greatly simplifies the process of adding another flag
to getLoad.
Reviewers: chandlerc, tstellarAMD
Subscribers: jholewinski, arsenm, jyknight, dsanders, nemanjai, llvm-commits
Differential Revision: http://reviews.llvm.org/D22249
llvm-svn: 275592
Errata fixes for various errata in different versions of the Leon variants of the Sparc 32 bit processor.
The nature of the errata are listed in the comments preceding the errata fix passes. Relevant unit tests are implemented for each of these.
Note: Running clang-format has changed a few other lines too, unrelated to the implemented errata fixes. These have been left in as this keeps the code formatting consistent.
Differential Revision: http://reviews.llvm.org/D21960
llvm-svn: 274856
This is a mechanical change to make TargetLowering API take MachineInstr&
(instead of MachineInstr*), since the argument is expected to be a valid
MachineInstr. In one case, changed a parameter from MachineInstr* to
MachineBasicBlock::iterator, since it was used as an insertion point.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
llvm-svn: 274287
This is mostly a mechanical change to make TargetInstrInfo API take
MachineInstr& (instead of MachineInstr* or MachineBasicBlock::iterator)
when the argument is expected to be a valid MachineInstr. This is a
general API improvement.
Although it would be possible to do this one function at a time, that
would demand a quadratic amount of churn since many of these functions
call each other. Instead I've done everything as a block and just
updated what was necessary.
This is mostly mechanical fixes: adding and removing `*` and `&`
operators. The only non-mechanical change is to split
ARMBaseInstrInfo::getOperandLatencyImpl out from
ARMBaseInstrInfo::getOperandLatency. Previously, the latter took a
`MachineInstr*` which it updated to the instruction bundle leader; now,
the latter calls the former either with the same `MachineInstr&` or the
bundle leader.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
Note: I updated WebAssembly, Lanai, and AVR (despite being
off-by-default) since it turned out to be easy. I couldn't run tests
for AVR since llc doesn't link with it turned on.
llvm-svn: 274189
MCSymbol.h shouldn't pull in MCAssembler.h, just MCFragment.h.
MCLinkerOptimizationHint.h shouldn't need MCMachObjectWriter.h. The
rest is fixing the fallout.
llvm-svn: 273507
The setCallee function will set the number of fixed arguments based
on the size of the argument list. The FixedArgs parameter was often
explicitly set to 0, leading to a lack of consistent value for non-
vararg functions.
Differential Revision: http://reviews.llvm.org/D20376
llvm-svn: 273403
Passes to fix three hardware errata that appear on some LEON processor variants.
The instructions FSMULD, FMULS and FDIVS do not work as expected on some LEON processors. This change allows those instructions to be substituted for alternatives instruction sequences that are known to work.
These passes only run when selected individually, or as part of a processor defintion. They are not included in general SPARC processor compilations for non-LEON processors or for those LEON processors that do not have these hardware errata.
llvm-svn: 273108
Many CPUs only have the ability to do a 4-byte cmpxchg (or ll/sc), not 1
or 2-byte. For those, you need to mask and shift the 1 or 2 byte values
appropriately to use the 4-byte instruction.
This change adds support for cmpxchg-based instruction sets (only SPARC,
in LLVM). The support can be extended for LL/SC-based PPC and MIPS in
the future, supplanting the ISel expansions those architectures
currently use.
Tests added for the IR transform and SPARCv9.
Differential Revision: http://reviews.llvm.org/D21029
llvm-svn: 273025
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
They were accidentally using the 32-bit load/store instruction for
8/16-bit operations, due to incorrect patterns
(8/16-bit cmpxchg and atomicrmw will be fixed in subsequent changes)
llvm-svn: 270486
This code should have been with the previous check-in (r270417) and prevents the DelaySlotFiller pass being utilized in functions where the erratum fix has been applied as this will break the run-time code.
llvm-svn: 270418
Due to an erratum in some versions of LEON, we must insert a NOP after any LD or LDF instruction to ensure the processor has time to load the value correctly before using it. This pass will implement that erratum fix.
The code will have no effect for other Sparc, but non-LEON processors.
Differential Review: http://reviews.llvm.org/D20353
llvm-svn: 270417
Having an enum member named Default is quite confusing: Is it distinct
from the others?
This patch removes that member and instead uses Optional<Reloc> in
places where we have a user input that still hasn't been maped to the
default value, which is now clear has no be one of the remaining 3
options.
llvm-svn: 269988
MC only needs to know if the output is PIC or not. It never has to
decide about creating GOTs and PLTs for example. The only thing that
MC itself uses this information for is expanding "macros" in sparc and
mips. The rest I am pretty sure could be moved to CodeGen.
This is a cleanup and isolates the code from future changes to
Reloc::Model.
llvm-svn: 269909
This change adds support for software floating point operations for Sparc targets.
This is the first in a set of patches to enable software floating point on Sparc. The next patch will enable the option to be used with Clang.
Differential Revision: http://reviews.llvm.org/D19265
llvm-svn: 269892
- Where we were returning a node before, call ReplaceNode instead.
- Where we would return null to fall back to another selector, rename
the method to try* and return a bool for success.
- Where we were calling SelectNodeTo, just return afterwards.
Part of llvm.org/pr26808.
llvm-svn: 269490
Many files include Passes.h but only a fraction needs to know about the
TargetPassConfig class. Move it into an own header. Also rename
Passes.cpp to TargetPassConfig.cpp while we are at it.
llvm-svn: 269011
This change adds SMAC (signed multiply-accumulate) and UMAC (unsigned multiply-accumulate) for LEON subtargets of the Sparc processor.
The new files LeonFeatures.td and leon-instructions.ll will both be expanded in future, so I want to leave them separate as small files for this review, to be expanded in future check-ins.
Note: The functions are provided only for inline-assembly provision. No DAG selection is provided.
Differential Revision: http://reviews.llvm.org/D19911
llvm-svn: 268908
This is a step towards removing the rampant undefined behaviour in
SelectionDAG, which is a part of llvm.org/PR26808.
We rename SelectionDAGISel::Select to SelectImpl and update targets to
match, and then change Select to return void and consolidate the
sketchy behaviour we're trying to get away from there.
Next, we'll update backends to implement `void Select(...)` instead of
SelectImpl and eventually drop the base Select implementation.
llvm-svn: 268693
Modification of previously existing code (variable rename only), with unit test added.
Differential Revision: http://reviews.llvm.org/D19368
llvm-svn: 268493
This code implements builtin_setjmp and builtin_longjmp exception handling intrinsics for 32-bit Sparc back-ends.
The code started as a mash-up of the PowerPC and X86 versions, although there are sufficient differences to both that had to be made for Sparc handling.
Note: I have manual tests running. I'll work on a unit test and add that to the rest of this diff in the next day.
Also, this implementation is only for 32-bit Sparc. I haven't focussed on a 64-bit version, although I have left the code in a prepared state for implementing this, including detecting pointer size and comments indicating where I suspect there may be differences.
Differential Revision: http://reviews.llvm.org/D19798
llvm-svn: 268483
This patch changes the TargetMachine arguments to be const. This is
required for {D19265}, and was requested to be done in a separate patch.
Patch by Jacob Hansen!
Differential Revision: http://reviews.llvm.org/D19797
llvm-svn: 268389
Summary:
Historically, we had a switch in the Makefiles for turning on "expensive
checks". This has never been ported to the cmake build, but the
(dead-ish) code is still around.
This will also make it easier to turn it on in buildbots.
Reviewers: chandlerc
Subscribers: jyknight, mzolotukhin, RKSimon, gberry, llvm-commits
Differential Revision: http://reviews.llvm.org/D19723
llvm-svn: 268050
The SparcV8 fneg and fabs instructions interestingly come only in a
single-float variant. Since the sign bit is always the topmost bit no
matter what size float it is, you simply operate on the high
subregister, as if it were a single float.
However, the layout of double-floats in the float registers is reversed
on little-endian CPUs, so that the high bits are in the second
subregister, rather than the first.
Thus, this expansion must check the endianness to use the correct
subregister.
llvm-svn: 267489
Specifically, itineraries for LEON processors has been added, along with several LEON processor Subtargets. Although currently all these targets are pretty much identical, support for features that will differ among these processors will be added in the very near future.
The different Instruction Itinerary Classes (IICs) added are sufficient to differentiate between the instruction timings used by LEON and, quite probably, by generic Sparc processors too, but the focus of the exercise has been for LEON processors, as the requirement of my project. If the IICs are not sufficient for other Sparc processor types and you want to add a new itinerary for one of those, it should be relatively trivial to adapt this.
As none of the LEON processors has Quad Floats, or is a Version 9 processor, none of those instructions have itinerary classes defined and revert to the default "NoItinerary" instruction itinerary.
Phabricator Review: http://reviews.llvm.org/D19359
llvm-svn: 267121
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
(Recommit of r266002, with r266011, r266016, and not accidentally
including an extra unused/uninitialized element in LibcallRoutineNames)
AtomicExpandPass can now lower atomic load, atomic store, atomicrmw, and
cmpxchg instructions to __atomic_* library calls, when the target
doesn't support atomics of a given size.
This is the first step towards moving all atomic lowering from clang
into llvm. When all is done, the behavior of __sync_* builtins,
__atomic_* builtins, and C11 atomics will be unified.
Previously LLVM would pass everything through to the ISelLowering
code. There, unsupported atomic instructions would turn into __sync_*
library calls. Because of that behavior, Clang currently avoids emitting
llvm IR atomic instructions when this would happen, and emits __atomic_*
library functions itself, in the frontend.
This change makes LLVM able to emit __atomic_* libcalls, and thus will
eventually allow clang to depend on LLVM to do the right thing.
It is advantageous to do the new lowering to atomic libcalls in
AtomicExpandPass, before ISel time, because it's important that all
atomic operations for a given size either lower to __atomic_*
libcalls (which may use locks), or native instructions which won't. No
mixing and matching.
At the moment, this code is enabled only for SPARC, as a
demonstration. The next commit will expand support to all of the other
targets.
Differential Revision: http://reviews.llvm.org/D18200
llvm-svn: 266115
They broke the msan bot.
Original message:
Add __atomic_* lowering to AtomicExpandPass.
AtomicExpandPass can now lower atomic load, atomic store, atomicrmw,and
cmpxchg instructions to __atomic_* library calls, when the target
doesn't support atomics of a given size.
This is the first step towards moving all atomic lowering from clang
into llvm. When all is done, the behavior of __sync_* builtins,
__atomic_* builtins, and C11 atomics will be unified.
Previously LLVM would pass everything through to the ISelLowering
code. There, unsupported atomic instructions would turn into __sync_*
library calls. Because of that behavior, Clang currently avoids emitting
llvm IR atomic instructions when this would happen, and emits __atomic_*
library functions itself, in the frontend.
This change makes LLVM able to emit __atomic_* libcalls, and thus will
eventually allow clang to depend on LLVM to do the right thing.
It is advantageous to do the new lowering to atomic libcalls in
AtomicExpandPass, before ISel time, because it's important that all
atomic operations for a given size either lower to __atomic_*
libcalls (which may use locks), or native instructions which won't. No
mixing and matching.
At the moment, this code is enabled only for SPARC, as a
demonstration. The next commit will expand support to all of the other
targets.
Differential Revision: http://reviews.llvm.org/D18200
llvm-svn: 266062
AtomicExpandPass can now lower atomic load, atomic store, atomicrmw, and
cmpxchg instructions to __atomic_* library calls, when the target
doesn't support atomics of a given size.
This is the first step towards moving all atomic lowering from clang
into llvm. When all is done, the behavior of __sync_* builtins,
__atomic_* builtins, and C11 atomics will be unified.
Previously LLVM would pass everything through to the ISelLowering
code. There, unsupported atomic instructions would turn into __sync_*
library calls. Because of that behavior, Clang currently avoids emitting
llvm IR atomic instructions when this would happen, and emits __atomic_*
library functions itself, in the frontend.
This change makes LLVM able to emit __atomic_* libcalls, and thus will
eventually allow clang to depend on LLVM to do the right thing.
It is advantageous to do the new lowering to atomic libcalls in
AtomicExpandPass, before ISel time, because it's important that all
atomic operations for a given size either lower to __atomic_*
libcalls (which may use locks), or native instructions which won't. No
mixing and matching.
At the moment, this code is enabled only for SPARC, as a
demonstration. The next commit will expand support to all of the other
targets.
Differential Revision: http://reviews.llvm.org/D18200
llvm-svn: 266002
Summary:
In the context of http://wg21.link/lwg2445 C++ uses the concept of
'stronger' ordering but doesn't define it properly. This should be fixed
in C++17 barring a small question that's still open.
The code currently plays fast and loose with the AtomicOrdering
enum. Using an enum class is one step towards tightening things. I later
also want to tighten related enums, such as clang's
AtomicOrderingKind (which should be shared with LLVM as a 'C++ ABI'
enum).
This change touches a few lines of code which can be improved later, I'd
like to keep it as NFC for now as it's already quite complex. I have
related changes for clang.
As a follow-up I'll add:
bool operator<(AtomicOrdering, AtomicOrdering) = delete;
bool operator>(AtomicOrdering, AtomicOrdering) = delete;
bool operator<=(AtomicOrdering, AtomicOrdering) = delete;
bool operator>=(AtomicOrdering, AtomicOrdering) = delete;
This is separate so that clang and LLVM changes don't need to be in sync.
Reviewers: jyknight, reames
Subscribers: jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D18775
llvm-svn: 265602
Summary:
This adds the same checks that were added in r264593 to all
target-specific passes that run after register allocation.
Reviewers: qcolombet
Subscribers: jyknight, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D18525
llvm-svn: 265313
This will become necessary in a subsequent change to make this method
merge adjacent stack adjustments, i.e. it might erase the previous
and/or next instruction.
It also greatly simplifies the calls to this function from Prolog-
EpilogInserter. Previously, that had a bunch of logic to resume iteration
after the call; now it just continues with the returned iterator.
Note that this changes the behaviour of PEI a little. Previously,
it attempted to re-visit the new instruction created by
eliminateCallFramePseudoInstr(). That code was added in r36625,
but I can't see any reason for it: the new instructions will obviously
not be pseudo instructions, they will not have FrameIndex operands,
and we have already accounted for the stack adjustment.
Differential Revision: http://reviews.llvm.org/D18627
llvm-svn: 265036
They were previously expanded to CAS loops in a custom isel expansion,
but AtomicExpandPass knows how to do that generically.
Testing is covered by the existing sparc atomics.ll testcases.
llvm-svn: 264771
- Rename getATOMIC to getSYNC, as llvm will soon be able to emit both
'__sync' libcalls and '__atomic' libcalls, and this function is for
the '__sync' ones.
- getInsertFencesForAtomic() has been replaced with
shouldInsertFencesForAtomic(Instruction), so that the decision can be
made per-instruction. This functionality will be used soon.
- emitLeadingFence/emitTrailingFence are no longer called if
shouldInsertFencesForAtomic returns false, and thus don't need to
check the condition themselves.
llvm-svn: 263665
This will allow inline assembler code to utilize these features, but no automatic lowering is provided, except for the previously provided @llvm.trap, which lowers to "ta 5".
The change also separates out the different assembly language syntaxes for V8 and V9 Sparc. Previously, only V9 Sparc assembly syntax was provided.
The change also corrects the selection order of trap disassembly, allowing, e.g. "ta %g0 + 15" to be rendered, more readably, as "ta 15", ignoring the %g0 register. This is per the sparc v8 and v9 manuals.
Check-in includes many extra unit tests to check this works correctly on both V8 and V9 Sparc processors.
Code Reviewed at http://reviews.llvm.org/D17960.
llvm-svn: 263044
These are all co-processor registers, with the exception of the floating-point deferred-trap queue register.
Although these will not be lowered automatically by any instructions, it allows the use of co-processor
instructions implemented by inline-assembly.
Code Reviewed at http://reviews.llvm.org/D17133, with the exception of a very small change in brace placement in SparcInstrInfo.td,
which was formerly causing a problem in the disassembly of the %fq register.
llvm-svn: 262133
Change TargetInstrInfo API to take `MachineInstr&` instead of
`MachineInstr*` in the functions related to predicated instructions
(I'll try to come back later and get some of the rest). All of these
functions require non-null parameters already, so references are more
clear. As a bonus, this happens to factor away a host of implicit
iterator => pointer conversions.
No functionality change intended.
llvm-svn: 261605
Delete MachineInstr::getIterator(), since the term "iterator" is
overloaded when talking about MachineInstr.
- Downcast to ilist_node in iplist::getNextNode() and getPrevNode() so
that ilist_node::getIterator() is still available.
- Add it back as MachineInstr::getInstrIterator(). This matches the
naming in MachineBasicBlock.
- Add MachineInstr::getBundleIterator(). This is explicitly called
"bundle" (not matching MachineBasicBlock) to disintinguish it clearly
from ilist_node::getIterator().
- Update all calls. Some of these I switched to `auto` to remove
boiler-plate, since the new name is clear about the type.
There was one call I updated that looked fishy, but it wasn't clear what
the right answer was. This was in X86FrameLowering::inlineStackProbe(),
added in r252578 in lib/Target/X86/X86FrameLowering.cpp. I opted to
leave the behaviour unchanged, but I'll reply to the original commit on
the list in a moment.
llvm-svn: 261504
The encodings for floating point conditions A(lways) and N(ever) were
incorrectly specified for the assembly parser, per Sparc manual v8 page
121. This change corrects that mistake.
Also, strangely, all of the branch instructions already had MC test
cases, except for the broken ones. Added the tests.
Patch by Chris Dewhurst
Differential Revision: http://reviews.llvm.org/D17074
llvm-svn: 260390
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861
AnalyzeBranch on X86 (and, previously, SPARC, which implementation was
copied from X86) tries to modify the branches based on block
layout (e.g. checking isLayoutSuccessor), when AllowModify is true.
The rest of the architectures leave that up to the caller, which can
call InsertBranch, RemoveBranch, and ReverseBranchCondition as
appropriate. That appears to be the preferred way to do it nowadays.
This commit makes SPARC like the rest: replaces AnalyzeBranch with an
implementation cribbed from AArch64, and adds a ReverseBranchCondition
implementation.
Additionally, a test-case has been added (also cribbed from AArch64)
demonstrating that redundant branch sequences no longer get emitted.
E.g., it used to emit code like this:
bne .LBB1_2
nop
ba .LBB1_1
nop
.LBB1_2:
And now emits:
cmp %i0, 42
be .LBB1_1
nop
llvm-svn: 257572
On SparcV8, doubles get passed in two 32-bit integer registers. The call
code was already handling endianness correctly, but the incoming
argument code was not -- it got the two halves in opposite order.
Also remove some dead code in LowerFormalArguments_32 to handle
less-than-32bit values, which can't actually happen.
Finally, add some test cases for the 32-bit calling convention, cribbed
from the 64abi.ll test, and run for both big and little-endian.
llvm-svn: 255668
These are redundant pairs of nodes defined for
INSERT_VECTOR_ELEMENT/EXTRACT_VECTOR_ELEMENT.
insertelement/extractelement are slightly closer to the corresponding
C++ node name, and has stricter type checking so prefer it.
Update targets to only use these nodes where it is trivial to do so.
AArch64, ARM, and Mips all have various type errors on simple replacement,
so they will need work to fix.
Example from AArch64:
def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
(i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>;
Which is trying to do sext_inreg i8, i8.
llvm-svn: 255359