I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
This reverts commit e065977c4b5f68ab845400b256f6a3822b1325fa.
It doesn't work. S_LOAD_DWORD_IMM_ci and friends aren't selected by any of
the patterns, so it was putting 32-bit literals into the 8-bit field.
llvm-svn: 303754
This is just a cleanup. Also, it adds checking that ByteCount is aligned to 4.
Reviewers: arsenm, nhaehnle, tstellarAMD
Subscribers: kzhuravl, wdng, yaxunl, tony-tye
Differential Revision: https://reviews.llvm.org/D28994
llvm-svn: 303658
Check the MachinePointerInfo for whether the access is
supposed to be relative to the stack pointer.
No tests because this is used in later commits implementing
calls.
llvm-svn: 303301
Avoids instructions to pack a vector when the source is really
a scalar being broadcast.
Also be smarter and look for per-component fneg.
Doesn't yet handle scalar from upper half of register
or other swizzles.
llvm-svn: 303291
We don't use it and it was removed in gfx9, and the encoding
bit repurposed.
Additionally actually using it requires changing the output register
class, which wasn't done anyway.
llvm-svn: 302814
In call sequence setups, there may not be a frame index base
and the pointer is a constant offset from the frame
pointer / scratch wave offset register.
llvm-svn: 301230
Enabled clamp and omod for v_cvt_* opcodes which have src0 of an integer type
Reviewers: vpykhtin, arsenm
Differential Revision: https://reviews.llvm.org/D31327
llvm-svn: 298852
As we introduced target triple environment amdgiz and amdgizcl, the address
space values are no longer enums. We have to decide the value by target triple.
The basic idea is to use struct AMDGPUAS to represent address space values.
For address space values which are not depend on target triple, use static
const members, so that they don't occupy extra memory space and is equivalent
to a compile time constant.
Since the struct is lightweight and cheap, it can be created on the fly at
the point of usage. Or it can be added as member to a pass and created at
the beginning of the run* function.
Differential Revision: https://reviews.llvm.org/D31284
llvm-svn: 298846
I think this is safe as long as no inputs are known to ever
be nans.
Also add an intrinsic for fmed3 to be able to handle all safe
math cases.
llvm-svn: 293598
m0 may need to be written for spill code, so
we don't want general code uses relying on the
value stored in it.
This introduces a few code quality regressions where copies
from m0 are not coalesced into copies of a copy of m0.
llvm-svn: 287841
Summary:
This will be used for 64-bit MULHU, which is in turn used for the 64-bit
divide-by-constant optimization (see D24822).
Reviewers: arsenm, tstellarAMD
Subscribers: kzhuravl, wdng, yaxunl, llvm-commits, tony-tye
Differential Revision: https://reviews.llvm.org/D25289
llvm-svn: 284224
We were trying to avoid using a FrameIndex operand in non-pointer
operands in a convoluted way, and would break because of
using TargetFrameIndex. The TargetFrameIndex should only be used
in the case where it makes sense to fold it as part of the addressing
mode, otherwise it requires materialization like a normal constant.
This wasn't working reliably and failed in the added testcase, hitting
the assert when processing the frame index.
The TargetFrameIndex was coming from trying to produce an AssertZext
limiting the maximum stack size. I'm not sure this was correct to begin
with, because it is apparently possible to have a single workitem
dispatch that requires all 4G of private memory.
llvm-svn: 281824
Summary:
Previously, constant index insertelements would be turned into SI_INDIRECT_DST,
which is bound to prevent some optimization opportunities. Worse, it mislead
the heuristic that decides whether immediates should be lowered to S_MOV_B32
or V_MOV_B32 in a way that resulted in unnecessary v_readfirstlanes.
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: http://reviews.llvm.org/D22217
llvm-svn: 275160
Summary:
These have been replaced with TableGen code (except for isConstantLoad,
which is still used for R600). The queries were broken for cases
where MemOperand was a PseudoSourceValue.
Reviewers: arsenm
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: http://reviews.llvm.org/D21684
llvm-svn: 274561
Summary:
The isGlobalLoad() query was returning true for constant address space loads
with memory types less than 32-bits, which is wrong. This logic has been
replaced with PatFrag in the TableGen files, to provide the same functionality.
Reviewers: arsenm
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: http://reviews.llvm.org/D21696
llvm-svn: 274521
Split AMDGPUSubtarget into amdgcn/r600 specific subclasses.
This removes most of the static_casting of the basic codegen
classes everywhere, and tries to restrict the features
visible on the wrong target.
llvm-svn: 273652
Summary:
This fixes two related bugs. First, the generic optimization passes
unfortunately generate negative constant offsets but the hardware treats
SOffset as an unsigned value.
Second, there is a hardware bug on SI and CI, where address clamping in MUBUF
instructions does not work correctly when SOffset is larger than the buffer
size. This patch works around this bug by never using SOffset.
An alternative workaround would be to do the clamping manually when SOffset
is too large, but generating the required code sequence during instruction
selection would be rather involved, and in any case the resulting code would
probably be worse.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=96360
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: http://reviews.llvm.org/D21326
llvm-svn: 272761