This attribute is used to ensure the guard page is triggered on stack
overflow. Stack frames larger than the guard page size will generate
a call to __probestack to touch each page so the guard page won't
be skipped.
Reviewed By: majnemer
Differential Revision: https://reviews.llvm.org/D34386
llvm-svn: 305939
Using various methods, BasicAA tries to determine whether two
GetElementPtr memory locations alias when its base pointers are known
to be equal. When none of its heuristics are applicable, it falls back
to PartialAlias to, according to a comment, protect TBAA making a wrong
decision in case of unions and malloc. PartialAlias is not correct,
because a PartialAlias result implies that some, but not all, bytes
overlap which is not necessarily the case here.
AAResults returns the first analysis result that is not MayAlias.
BasicAA is always the first alias analysis. When it returns
PartialAlias, no other analysis is queried to give a more exact result
(which was the intention of returning PartialAlias instead of MayAlias).
For instance, ScopedAA could return a more accurate result.
The PartialAlias hack was introduced in r131781 (and re-applied in
r132632 after some reverts) to fix llvm.org/PR9971 where TBAA returns a
wrong NoAlias result due to a union. A test case for the malloc case
mentioned in the comment was not provided and I don't think it is
affected since it returns an omnipotent char anyway.
Since r303851 (https://reviews.llvm.org/D33328) clang does emit specific
TBAA for unions anymore (but "omnipotent char" instead). Hence, the
PartialAlias workaround is not required anymore.
This patch passes the test-suite and check-llvm/check-clang of a
self-hoisted build on x64.
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D34318
llvm-svn: 305938
This will be needed in order to share the irsymtab string table with
the bitcode string table.
Differential Revision: https://reviews.llvm.org/D33971
llvm-svn: 305937
Summary: r305009 disables recursive inlining for indirect calls in sample loader pass. The same logic applies to direct recursive calls.
Reviewers: iteratee, davidxl
Reviewed By: iteratee
Subscribers: sanjoy, llvm-commits, eraman
Differential Revision: https://reviews.llvm.org/D34456
llvm-svn: 305934
Summary:
The main complexity in adding symbol records is that we need to
"relocate" all the type indices. Type indices do not have anything like
relocations, an opaque data structure describing where to find existing
type indices for fixups. The linker just has to "know" where the type
references are in the symbol records. I added an overload of
`discoverTypeIndices` that works on symbol records, and it seems to be
able to link the standard library.
Reviewers: zturner, ruiu
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D34432
llvm-svn: 305933
Define target hook isReallyTriviallyReMaterializable() to explicitly specify
PowerPC instructions that are trivially rematerializable. This will allow
the MachineLICM pass to accurately identify PPC instructions that should always
be hoisted.
Differential Revision: https://reviews.llvm.org/D34255
llvm-svn: 305932
I don't think there's any visible difference from having the wrong layout
for the 32-bit case at this point, but that could change in the future.
llvm-svn: 305931
Summary:
I noticed that passing known bits across these intrinsics isn't great at capturing the information we really know. Turning known bits of the input into known bits of a count output isn't able to convey a lot of what we really know.
This patch adds range metadata to these intrinsics based on the known bits.
Currently the patch punts if we already have range metadata present.
Reviewers: spatel, RKSimon, davide, majnemer
Reviewed By: RKSimon
Subscribers: sanjoy, hfinkel, llvm-commits
Differential Revision: https://reviews.llvm.org/D32582
llvm-svn: 305927
Summary:
Previously this folding had no checks to see if it was going to result in less instructions. This was pointed out during the review of D34184
This patch adds code to count how many instructions its going to create vs how many its going to remove so we can make a proper decision.
Reviewers: spatel, majnemer
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34437
llvm-svn: 305926
Added test file for ARMv8.1 LSE Atomics that I forgot to include in
commit r305893.
Patch by Ananth Jasty.
Differential Revision: https://reviews.llvm.org/D33586
Change-Id: Ic1ad8ed87c1b584c4c791b459a686c866a3c3087
llvm-svn: 305918
Move GlobalAddress Offset decomposition from initial match into
comparision check and removing the possibility of constructing a new
offseted global address when examining addresses.
llvm-svn: 305917
Implemented support to AArch64 codegen for ARMv8.1 Large System
Extensions atomic instructions. Where supported, these instructions can
provide atomic operations with higher performance.
Currently supported operations include: fetch_add, fetch_or, fetch_xor,
fetch_smin, fetch_min/max (signed and unsigned), swap, and
compare_exchange.
This implementation implies sequential-consistency ordering, more
relaxed ordering is under development.
Subtarget->hasLSE is currently supported for Cavium ThunderX2T99.
Patch by Ananth Jasty.
Differential Revision: https://reviews.llvm.org/D33586
Change-Id: I82f6d3d64255622791ceb0715b7ab9f4dc4d4b2c
llvm-svn: 305893
Summary:
This function retries an operation if it was interrupted by a signal
(failed with EINTR). It's inspired by the TEMP_FAILURE_RETRY macro in
glibc, but I've turned that into a template function. I've also added a
fail-value argument, to enable the function to be used with e.g.
fopen(3), which is documented to fail for any reason that open(2) can
fail (which includes EINTR).
The main user of this function will be lldb, but there were also a
couple of uses within llvm that I could simplify using this function.
Reviewers: zturner, silvas, joerg
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D33895
llvm-svn: 305892
There should be at most a single kill flag for the
promoted operand between the store/load pair.
Discussed in https://reviews.llvm.org/D34402.
llvm-svn: 305889
This patch adds one more condition in selection DINS/INS
instruction, which fixes MultiSource/Applications/JM/ldecod/
for mips32r2 (and mips64r2 n32 abi).
Differential Revision: https://reviews.llvm.org/D33725
llvm-svn: 305888
Converts to range-loop usage in machine scheduler.
This makes the code neater and easier to read,
and also keeps pace of the machine scheduler
implementation with C++11 features.
Reviewed by: Matthias Braun
Differential Revision: https://reviews.llvm.org/D34320
llvm-svn: 305887
Summary: Previously there were two separate pseudo instruction for SDWA on VI and on GFX9. Created one pseudo instruction that is union of both of them. Added verifier to check that operands conform either VI or GFX9.
Reviewers: dp, arsenm, vpykhtin
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, artem.tamazov
Differential Revision: https://reviews.llvm.org/D34026
llvm-svn: 305886
Summary:
This patch updates promoteLoadFromStore to use the store MachineOperand as the
source operand of the of the new instruction instead of creating a new
register MachineOperand. This way, the existing register flags are
preserved.
This fixes PR33468 (https://bugs.llvm.org/show_bug.cgi?id=33468).
Reviewers: MatzeB, t.p.northover, junbuml
Reviewed By: MatzeB
Subscribers: aemerson, rengolin, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D34402
llvm-svn: 305885
Add support for combining a build vector to a shuffle.
When the build vector is of extracted elements from 2 vectors (vec1, vec2) where vec2 is 2 times smaller than vec1.
llvm-svn: 305883
MulOpsInlineThreshold option of SCEV is defaulted to 1000, which is inadequately high.
When constructing SCEVs of expressions like:
x1 = a * a
x2 = x1 * x1
x3 = x2 * x2
...
We actually have huge SCEVs with max allowed amount of operands inlined.
Such expressions are easy to get from unrolling of loops looking like
x = a
for (i = 0; i < n; i++)
x = x * x
Or more tricky cases where big powers are involved. If some non-linear analysis
tries to work with a SCEV that has 1000 operands, it may lead to excessively long
compilation. The attached test does not pass within 1 minute with default threshold.
This patch decreases its default value to 32, which looks much more reasonable if we
use analyzes with complexity O(N^2) or O(N^3) working with SCEV.
Differential Revision: https://reviews.llvm.org/D34397
llvm-svn: 305882