This change aligns globals to the next highest power of 2 bytes, up to a
maximum of 128. This makes it more likely that we will be able to compress
bit sets with a greater alignment. In many more cases, we can now take
advantage of a new optimization also introduced in this patch that removes
bit set checks if the bit set is all ones.
The 128 byte maximum was found to provide the best tradeoff between instruction
overhead and data overhead in a recent build of Chromium. It allows us to
remove ~2.4MB of instructions at the cost of ~250KB of data.
Differential Revision: http://reviews.llvm.org/D7873
llvm-svn: 230540
The builder is based on a layout algorithm that tries to keep members of
small bit sets together. The new layout compresses Chromium's bit sets to
around 15% of their original size.
Differential Revision: http://reviews.llvm.org/D7796
llvm-svn: 230394
This patch introduces a new mechanism that allows IR modules to co-operatively
build pointer sets corresponding to addresses within a given set of
globals. One particular use case for this is to allow a C++ program to
efficiently verify (at each call site) that a vtable pointer is in the set
of valid vtable pointers for the class or its derived classes. One way of
doing this is for a toolchain component to build, for each class, a bit set
that maps to the memory region allocated for the vtables, such that each 1
bit in the bit set maps to a valid vtable for that class, and lay out the
vtables next to each other, to minimize the total size of the bit sets.
The patch introduces a metadata format for representing pointer sets, an
'@llvm.bitset.test' intrinsic and an LTO lowering pass that lays out the globals
and builds the bitsets, and documents the new feature.
Differential Revision: http://reviews.llvm.org/D7288
llvm-svn: 230054