This allows later passes (in particular InstCombine) to optimize more
cases.
One that's important to us is `memcmp(p, q, constant) < 0` and memcmp(p, q, constant) > 0.
llvm-svn: 364412
This fixes CodeGen/available-externally-suppress.c when the new pass manager is
turned on by default. available_externally was not emitted during -O2 -flto
runs when it should still be retained for link time inlining purposes. This can
be fixed by checking that we aren't LTOPrelinking when adding the
EliminateAvailableExternallyPass.
Differential Revision: https://reviews.llvm.org/D63580
llvm-svn: 363971
NOTE: Note that no attributes are derived yet. This patch will not go in
alone but only with others that derive attributes. The framework is
split for review purposes.
This commit introduces the Attributor pass infrastructure and fixpoint
iteration framework. Further patches will introduce abstract attributes
into this framework.
In a nutshell, the Attributor will update instances of abstract
arguments until a fixpoint, or a "timeout", is reached. Communication
between the Attributor and the abstract attributes that are derived is
restricted to the AbstractState and AbstractAttribute interfaces.
Please see the file comment in Attributor.h for detailed information
including design decisions and typical use case. Also consider the class
documentation for Attributor, AbstractState, and AbstractAttribute.
Reviewers: chandlerc, homerdin, hfinkel, fedor.sergeev, sanjoy, spatel, nlopes, nicholas, reames
Subscribers: mehdi_amini, mgorny, hiraditya, bollu, steven_wu, dexonsmith, dang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59918
llvm-svn: 362578
Summary:
The refactoring in r360276 moved the `RunSLPVectorization` flag and added the default explicitly. The default should have been `false`, as before.
The new pass manager used to have SLPVectorization on by default, now it's off in opt, and needs D61617 checked in to enable it in clang.
Reviewers: chandlerc
Subscribers: mehdi_amini, jlebar, eraman, steven_wu, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61955
llvm-svn: 361537
Summary:
This is a redo of D60914.
The objective is to not invalidate AAManager, which is stateless, unless
there is an explicit invalidate in one of the AAResults.
To achieve this, this patch adds an API to PAC, to check precisely this:
is this analysis not invalidated explicitly == is this analysis not abandoned == is this analysis stateless, so preserved without explicitly being marked as preserved by everyone
Reviewers: chandlerc
Subscribers: mehdi_amini, jlebar, george.burgess.iv, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61284
llvm-svn: 359622
Currently, we do not expose BPI to loop passes at all. In the old pass manager, we appear to have been ignoring the fact that LCSSA and/or LoopSimplify didn't preserve BPI, and making it available to the following loop passes anyways. In the new one, it's invalidated before running any loop pass if either LCSSA or LoopSimplify actually make changes. If they don't make changes, then BPI is valid and available. So, we go ahead and teach LCSSA and LoopSimplify how to preserve BPI for consistency between old and new pass managers.
This patch avoids an invalidation between the two requires in the following trivial pass pipeline:
opt -passes="requires<branch-prob>,loop(no-op-loop),requires<branch-prob>"
(when the input file is one which requires either LCSSA or LoopSimplify to canonicalize the loops)
Differential Revision: https://reviews.llvm.org/D60790
llvm-svn: 358901
Summary:
Enable some of the existing size optimizations for cold code under PGO.
A ~5% code size saving in big internal app under PGO.
The way it gets BFI/PSI is discussed in the RFC thread
http://lists.llvm.org/pipermail/llvm-dev/2019-March/130894.html
Note it doesn't currently touch loop passes.
Reviewers: davidxl, eraman
Reviewed By: eraman
Subscribers: mgorny, javed.absar, smeenai, mehdi_amini, eraman, zzheng, steven_wu, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59514
llvm-svn: 358422
The issue here is that we actually allow CGSCC passes to mutate IR (and
therefore invalidate analyses) outside of the current SCC. At a minimum,
we need to support mutating parent and ancestor SCCs to support the
ArgumentPromotion pass which rewrites all calls to a function.
However, the analysis invalidation infrastructure is heavily based
around not needing to invalidate the same IR-unit at multiple levels.
With Loop passes for example, they don't invalidate other Loops. So we
need to customize how we handle CGSCC invalidation. Doing this without
gratuitously re-running analyses is even harder. I've avoided most of
these by using an out-of-band preserved set to accumulate the cross-SCC
invalidation, but it still isn't perfect in the case of re-visiting the
same SCC repeatedly *but* it coming off the worklist. Unclear how
important this use case really is, but I wanted to call it out.
Another wrinkle is that in order for this to successfully propagate to
function analyses, we have to make sure we have a proxy from the SCC to
the Function level. That requires pre-creating the necessary proxy.
The motivating test case now works cleanly and is added for
ArgumentPromotion.
Thanks for the review from Philip and Wei!
Differential Revision: https://reviews.llvm.org/D59869
llvm-svn: 357137
LTO provides additional opportunities for tailcall elimination due to
link-time inlining and visibility of nocapture attribute. Testing showed
negligible impact on compilation times.
Differential Revision: https://reviews.llvm.org/D58391
llvm-svn: 356511
TimePassesHandler object (implementation of time-passes for new pass manager)
gains ability to report into a stream customizable per-instance (per pipeline).
Intended use is to specify separate time-passes output stream per each compilation,
setting up TimePasses member of StandardInstrumentation during PassBuilder setup.
That allows to get independent non-overlapping pass-times reports for parallel
independent compilations (in JIT-like setups).
By default it still puts timing reports into the info-output-file stream
(created by CreateInfoOutputFile every time report is requested).
Unit-test added for non-default case, and it also allowed to discover that print() does not work
as declared - it did not reset the timers, leading to yet another report being printed into the default stream.
Fixed print() to actually reset timers according to what was declared in print's comments before.
Reviewed By: philip.pfaffe
Differential Revision: https://reviews.llvm.org/D59366
llvm-svn: 356305
Part 4 of CSPGO changes:
(1) add support in cmake for cspgo build.
(2) fix an issue in big endian.
(3) test cases.
Differential Revision: https://reviews.llvm.org/D54175
llvm-svn: 355541
With or without PGO data applied, splitting early in the pipeline
(either before the inliner or shortly after it) regresses performance
across SPEC variants. The cause appears to be that splitting hides
context for subsequent optimizations.
Schedule splitting late again, in effect reversing r352080, which
scheduled the splitting pass early for code size benefits (documented in
https://reviews.llvm.org/D57082).
Differential Revision: https://reviews.llvm.org/D58258
llvm-svn: 354158
Summary:
Follow up to D57082 which moved splitting earlier in the pipeline, in
order to perform it before inlining. However, it was moved too early,
before the IR is annotated with instrumented PGO data. This caused the
splitting to incorrectly determine cold functions.
Move it to just after PGO annotation (still before inlining), in both
pass managers.
Reviewers: vsk, hiraditya, sebpop
Subscribers: mehdi_amini, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57805
llvm-svn: 353270
Summary:
Follow on to D54819/r351476.
We also don't need to perform extra InstCombine pass when we aren't
loading the sample profile in the ThinLTO backend because we have a
flattened sample profile.
Additionally, for consistency and clarity, when we aren't reloading the
sample profile, perform ICP in the same location as non-sample PGO
backends. To this end I have moved the ICP invocation for non-SamplePGO
ThinLTO down into buildModuleSimplificationPipeline (partly addresses
the FIXME where we were previously setting this up).
Reviewers: wmi
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57705
llvm-svn: 353135
This is meant to be used with clang's __builtin_dynamic_object_size.
When 'true' is passed to this parameter, the intrinsic has the
potential to be folded into instructions that will be evaluated
at run time. When 'false', the objectsize intrinsic behaviour is
unchanged.
rdar://32212419
Differential revision: https://reviews.llvm.org/D56761
llvm-svn: 352664
See the bot error message reported in https://reviews.llvm.org/D57082.
Avoid trying to match full class names in -debug-pass-manager output,
because they aren't portable.
llvm-svn: 352138
Performing splitting early has several advantages:
- Inhibiting inlining of cold code early improves code size. Compared
to scheduling splitting at the end of the pipeline, this cuts code
size growth in half within the iOS shared cache (0.69% to 0.34%).
- Inhibiting inlining of cold code improves compile time. There's no
need to inline split cold functions, or to inline as much *within*
those split functions as they are marked `minsize`.
- During LTO, extra work is only done in the pre-link step. Less code
must be inlined during cross-module inlining.
An additional motivation here is that the most common cold regions
identified by the static/conservative splitting heuristic can (a) be
found before inlining and (b) do not grow after inlining. E.g.
__assert_fail, os_log_error.
The disadvantages are:
- Some opportunities for splitting out cold code may be missed. This
gap can potentially be narrowed by adding a worklist algorithm to the
splitting pass.
- Some opportunities to reduce code size may be lost (e.g. store
sinking, when one side of the CFG diamond is split). This does not
outweigh the code size benefits of splitting earlier.
On net, splitting early in the pipeline has substantial code size
benefits, and no major effects on memory locality or performance. We
measured memory locality using ktrace data, and consistently found that
10% fewer pages were needed to capture 95% of text page faults in key
iOS benchmarks. We measured performance on frequency-stabilized iOS
devices using LNT+externals.
This reverses course on the decision made to schedule splitting late in
r344869 (D53437).
Differential Revision: https://reviews.llvm.org/D57082
llvm-svn: 352080
Currently we have pgo options defined in PassManagerBuilder.cpp only for
instrument pgo, but not for sample pgo. We also have pgo options defined
in NewPMDriver.cpp in opt only for new pass manager and for all kinds of
pgo. They have some inconsistency.
To make the options more consistent and make tests writing easier, the
patch let old pass manager to share the same pgo options with new pass
manager in opt, and removes the options in PassManagerBuilder.cpp.
Differential Revision: https://reviews.llvm.org/D56749
llvm-svn: 351392
Make sure all print statements are compatible with Python 2 and Python3 using
the `from __future__ import print_function` statement.
Differential Revision: https://reviews.llvm.org/D56249
llvm-svn: 350307
-print-after IR printing generally can not print the IR unit (Loop or SCC)
which has just been invalidated by the pass. However, when working in -print-module-scope
mode even if Loop was invalidated there is still a valid module that we can print.
Since we can not access invalidated IR unit from AfterPassInvalidated instrumentation
point we can remember the module to be printed *before* pass. This change introduces
BeforePass instrumentation that stores all the information required for module printing
into the stack and then after pass (in AfterPassInvalidated) just print whatever
has been placed on stack.
Reviewed By: philip.pfaffe
Differential Revision: https://reviews.llvm.org/D55278
llvm-svn: 349896
When multiple loop transformation are defined in a loop's metadata, their order of execution is defined by the order of their respective passes in the pass pipeline. For instance, e.g.
#pragma clang loop unroll_and_jam(enable)
#pragma clang loop distribute(enable)
is the same as
#pragma clang loop distribute(enable)
#pragma clang loop unroll_and_jam(enable)
and will try to loop-distribute before Unroll-And-Jam because the LoopDistribute pass is scheduled after UnrollAndJam pass. UnrollAndJamPass only supports one inner loop, i.e. it will necessarily fail after loop distribution. It is not possible to specify another execution order. Also,t the order of passes in the pipeline is subject to change between versions of LLVM, optimization options and which pass manager is used.
This patch adds 'followup' attributes to various loop transformation passes. These attributes define which attributes the resulting loop of a transformation should have. For instance,
!0 = !{!0, !1, !2}
!1 = !{!"llvm.loop.unroll_and_jam.enable"}
!2 = !{!"llvm.loop.unroll_and_jam.followup_inner", !3}
!3 = !{!"llvm.loop.distribute.enable"}
defines a loop ID (!0) to be unrolled-and-jammed (!1) and then the attribute !3 to be added to the jammed inner loop, which contains the instruction to distribute the inner loop.
Currently, in both pass managers, pass execution is in a fixed order and UnrollAndJamPass will not execute again after LoopDistribute. We hope to fix this in the future by allowing pass managers to run passes until a fixpoint is reached, use Polly to perform these transformations, or add a loop transformation pass which takes the order issue into account.
For mandatory/forced transformations (e.g. by having been declared by #pragma omp simd), the user must be notified when a transformation could not be performed. It is not possible that the responsible pass emits such a warning because the transformation might be 'hidden' in a followup attribute when it is executed, or it is not present in the pipeline at all. For this reason, this patche introduces a WarnMissedTransformations pass, to warn about orphaned transformations.
Since this changes the user-visible diagnostic message when a transformation is applied, two test cases in the clang repository need to be updated.
To ensure that no other transformation is executed before the intended one, the attribute `llvm.loop.disable_nonforced` can be added which should disable transformation heuristics before the intended transformation is applied. E.g. it would be surprising if a loop is distributed before a #pragma unroll_and_jam is applied.
With more supported code transformations (loop fusion, interchange, stripmining, offloading, etc.), transformations can be used as building blocks for more complex transformations (e.g. stripmining+stripmining+interchange -> tiling).
Reviewed By: hfinkel, dmgreen
Differential Revision: https://reviews.llvm.org/D49281
Differential Revision: https://reviews.llvm.org/D55288
llvm-svn: 348944
IR-printing AfterPass instrumentation might be called on a loop
that has just been invalidated. We should skip printing it to
avoid spurious asserts.
Reviewed By: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D54740
llvm-svn: 348887
It appears that print-module-scope was not implemented for legacy SCC passes.
Fixed to print a whole module instead of just current SCC.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D54793
llvm-svn: 348144
Before this commit, `llc -print-after-all` would print something like:
*** IR Dump After Pre-ISel Intrinsic Lowering ***; ModuleID = ...
Emit a newline such that ModuleID appears on a line by its own.
llvm-svn: 346844
Summary:
It turns out that we need an OptimizerLast PassBuilder extension point
after all. I missed the relevance of this EP the first time. By legacy PM magic,
function passes added at this EP get added to the last _Function_ PM, which is a
feature we lost when dropping this EP for the new PM.
A key difference between this and the legacy PassManager's OptimizerLast
callback is that this extension point is not triggered at O0. Extensions
to the O0 pipeline should append their passes to the end of the overall
pipeline.
Differential Revision: https://reviews.llvm.org/D54374
llvm-svn: 346645
We can stop recording conditions once we reached the immediate dominator
for the block containing the call site. Conditions in predecessors of the
that node will be the same for all paths to the call site and splitting
is not beneficial.
This patch makes CallSiteSplitting dependent on the DT anlysis. because
the immediate dominators seem to be the easiest way of finding the node
to stop at.
I had to update some exiting tests, because they were checking for
conditions that were true/false on all paths to the call site. Those
should now be handled by instcombine/ipsccp.
Reviewers: davide, junbuml
Reviewed By: junbuml
Differential Revision: https://reviews.llvm.org/D44627
llvm-svn: 346483
Summary:
Fix the new PM to only perform hot cold splitting once during ThinLTO,
by skipping it in the pre-link phase.
This was already fixed in the old PM by the move of the hot cold split
pass later (after the early return when PrepareForThinLTO) by r344869.
Reviewers: vsk, sebpop, hiraditya
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D53611
llvm-svn: 345096
Summary:
This patch will print out {Counter, Skip, StopAfter} info of all passes which have DebugCounter set at destruction.
It can be used to monitor how many times does certain transformation happen in a pass, and also help check if -debug-counter option is set correctly.
Please refer to this [[ http://lists.llvm.org/pipermail/llvm-dev/2018-July/124722.html | thread ]] for motivation.
Reviewers: george.burgess.iv, davide, greened
Reviewed By: greened
Subscribers: kristina, llozano, mgorny, llvm-commits, mgrang
Differential Revision: https://reviews.llvm.org/D50031
llvm-svn: 345085
Summary:
In the new+old pass manager, hot cold splitting was schedule too early.
Thanks to Vedant for pointing this out.
Reviewers: sebpop, vsk
Reviewed By: sebpop, vsk
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D53437
llvm-svn: 344869
All the PassBuilder::parse interfaces now return descriptive StringError
instead of a plain bool. It allows to make -passes/aa-pipeline parsing
errors context-specific and thus less confusing.
TODO: ideally we should also make suggestions for misspelled pass names,
but that requires some extensions to PassBuilder.
Reviewed By: philip.pfaffe, chandlerc
Differential Revision: https://reviews.llvm.org/D53246
llvm-svn: 344685
Summary:
All the PassBuilder::parse interfaces now return descriptive StringError
instead of a plain bool. It allows to make -passes/aa-pipeline parsing
errors context-specific and thus less confusing.
TODO: ideally we should also make suggestions for misspelled pass names,
but that requires some extensions to PassBuilder.
Reviewed By: philip.pfaffe, chandlerc
Differential Revision: https://reviews.llvm.org/D53246
llvm-svn: 344519
Removing deficiency of initial implementation of -print-before-all/-after-all
- it was effectively skipping IR printing for all the SCC passes.
Now LazyCallGraph:SCC gets its IR printed.
Reviewed By: skatkov
Differential Revision: https://reviews.llvm.org/D53270
llvm-svn: 344505
If you have the string /usr/bin, prior to this patch it would not
be quoted by our YAML serializer. But a string like C:\src would
be, due to the presence of a backslash. This makes the quoting
rules of basically every single file path different depending on
the path syntax (posix vs. Windows).
While technically not required by the YAML specification to quote
forward slashes, when the behavior of paths is inconsistent it
makes it difficult to portably write FileCheck lines that will
work with either kind of path.
Differential Revision: https://reviews.llvm.org/D53169
llvm-svn: 344359
This reverts commit b86c16ad8c97dadc1f529da72a5bb74e9eaed344.
This is being reverted because I forgot to write a useful
commit message, so I'm going to resubmit it with an actual
commit message.
llvm-svn: 344358