When we calculate a product of 2 AddRecs, we end up making quite massive
computations to deduce the operands of resulting AddRec. This process can
be optimized by computing all args of intermediate sum and then calling
`getAddExpr` once rather than calling `getAddExpr` with intermediate
result every time a new argument is computed.
Differential Revision: https://reviews.llvm.org/D53189
Reviewed By: rtereshin
llvm-svn: 345813
optsize using masked wide loads
Under Opt for Size, the vectorizer does not vectorize interleave-groups that
have gaps at the end of the group (such as a loop that reads only the even
elements: a[2*i]) because that implies that we'll require a scalar epilogue
(which is not allowed under Opt for Size). This patch extends the support for
masked-interleave-groups (introduced by D53011 for conditional accesses) to
also cover the case of gaps in a group of loads; Targets that enable the
masked-interleave-group feature don't have to invalidate interleave-groups of
loads with gaps; they could now use masked wide-loads and shuffles (if that's
what the cost model selects).
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53668
llvm-svn: 345705
Summary:
Attempting to simplify the addPointer interface.
Currently there's code decomposing a MemoryLocation into (Ptr, Size, AAMDNodes) only to recreate the MemoryLocation inside the call.
Reviewers: reames, mkazantsev
Subscribers: sanjoy, jlebar, llvm-commits
Differential Revision: https://reviews.llvm.org/D53836
llvm-svn: 345548
The motivating case is from PR37549:
https://bugs.llvm.org/show_bug.cgi?id=37549
The analysis improvement allows us to form a vector 'select' out of
bitwise logic (the use of ComputeNumSignBits was added at rL345149).
The smaller test shows another InstCombine improvement - we use
ComputeNumSignBits to add 'nsw' to shift-left. But the negative
test shows an example where we must not add 'nsw' - when the shuffle
mask contains undef elements.
Differential Revision: https://reviews.llvm.org/D53659
llvm-svn: 345429
optimizing for size
LV is careful to respect -Os and not to create a scalar epilog in all cases
(runtime tests, trip-counts that require a remainder loop) except for peeling
due to gaps in interleave-groups. This patch fixes that; -Os will now have us
invalidate such interleave-groups and vectorize without an epilog.
The patch also removes a related FIXME comment that is now obsolete, and was
also inaccurate:
"FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a smaller
MaxVF that does not require a scalar epilog."
(requiresScalarEpilog() has nothing to do with VF).
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53420
llvm-svn: 344883
Summary:
This is patch 2 of the new DivergenceAnalysis (https://reviews.llvm.org/D50433).
This patch contains a generic divergence analysis implementation for
unstructured, reducible Control-Flow Graphs. It contains two new classes.
The `SyncDependenceAnalysis` class lazily computes sync dependences, which
relate divergent branches to points of joining divergent control. The
`DivergenceAnalysis` class contains the generic divergence analysis
implementation.
Reviewers: nhaehnle
Reviewed By: nhaehnle
Subscribers: sameerds, kristina, nhaehnle, xbolva00, tschuett, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D51491
llvm-svn: 344734
Summary:
Teach vectorizer about vectorizing variant value stores to uniform
address. Similar to rL343028, we do not allow vectorization if we have
multiple stores to the same uniform address.
Cost model already has the change for considering the extract
instruction cost for a variant value store. See added test cases for how
vectorization is done.
The patch also contains changes to the ORE messages.
Reviewers: Ayal, mkuper, anemet, hsaito
Subscribers: rkruppe, llvm-commits
Differential Revision: https://reviews.llvm.org/D52656
llvm-svn: 344613
This is an alternative implementation of LoopSafetyInfo that uses the implicit
control flow tracking to give precise answers on queries "whether or not this
block contains throwing instructions". This rules out false-positive answers on
LoopSafetyInfo's queries.
This patch only introduces the new implementation. It is not currently used in
any pass. The enabling patches will go separately, through review.
The plan is to completely replace all uses of LoopSafetyInfo with
ICFLoopSafetyInfo in the future, but to avoid introducing functional problems,
we will do it pass by pass.
llvm-svn: 344601
SCEV's transform that turns `{A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>` into
a single AddRec of size `2n+1` with complex combinatorial coefficients can easily
trigger exponential growth of the SCEV (in case if nothing gets folded and simplified).
We tried to restrain this transform using the option `scalar-evolution-max-add-rec-size`,
but its default value seems to be insufficiently small: the test attached to this patch
with default value of this option `16` has a SCEV of >3M symbols (when printed out).
This patch reduces the simplification limit. It is not a cure to combinatorial
explosions, but at least it reduces this corner case to something more or less
reasonable.
Differential Revision: https://reviews.llvm.org/D53282
Reviewed By: sanjoy
llvm-svn: 344584
by `getTerminator()` calls instead be declared as `Instruction`.
This is the biggest remaining chunk of the usage of `getTerminator()`
that insists on the narrow type and so is an easy batch of updates.
Several files saw more extensive updates where this would cascade to
requiring API updates within the file to use `Instruction` instead of
`TerminatorInst`. All of these were trivial in nature (pervasively using
`Instruction` instead just worked).
llvm-svn: 344502
LLVM APIs. There weren't very many.
We still have the instruction visitor, and APIs with TerminatorInst as
a return type or an output parameter.
llvm-svn: 344494
interleave-group
The vectorizer currently does not attempt to create interleave-groups that
contain predicated loads/stores; predicated strided accesses can currently be
vectorized only using masked gather/scatter or scalarization. This patch makes
predicated loads/stores candidates for forming interleave-groups during the
Loop-Vectorizer's analysis, and adds the proper support for masked-interleave-
groups to the Loop-Vectorizer's planning and transformation stages. The patch
also extends the TTI API to allow querying the cost of masked interleave groups
(which each target can control); Targets that support masked vector loads/
stores may choose to enable this feature and allow vectorizing predicated
strided loads/stores using masked wide loads/stores and shuffles.
Reviewers: Ayal, hsaito, dcaballe, fhahn, javed.absar
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53011
llvm-svn: 344472
Moving away from UnknownSize is part of the effort to migrate us to
LocationSizes (e.g. the cleanup promised in D44748).
This doesn't entirely remove all of the uses of UnknownSize; some uses
require tweaks to assume that UnknownSize isn't just some kind of int.
This patch is intended to just be a trivial replacement for all places
where LocationSize::unknown() will Just Work.
llvm-svn: 344186
Adding a new reduction pattern match for vectorizing code similar to TSVC s3111:
for (int i = 0; i < N; i++)
if (a[i] > b)
sum += a[i];
This patch adds support for fadd, fsub and fmull, as well as multiple
branches and different (but compatible) instructions (ex. add+sub) in
different branches.
I have forwarded to trunk, added fsub and fmul functionality and
additional tests, but the credit goes to Takahiro, who did most of the
actual work.
Differential Revision: https://reviews.llvm.org/D49168
Patch by Takahiro Miyoshi <takahiro.miyoshi@linaro.org>.
llvm-svn: 344172
There are places where we need to merge multiple LocationSizes of
different sizes into one, and get a sensible result.
There are other places where we want to optimize aggressively based on
the value of a LocationSizes (e.g. how can a store of four bytes be to
an area of storage that's only two bytes large?)
This patch makes LocationSize hold an 'imprecise' bit to note whether
the LocationSize can be treated as an upper-bound and lower-bound for
the size of a location, or just an upper-bound.
This concludes the series of patches leading up to this. The most recent
of which is r344108.
Fixes PR36228.
Differential Revision: https://reviews.llvm.org/D44748
llvm-svn: 344114
This is the third patch in a series intended to make
https://reviews.llvm.org/D44748 more easily reviewable. Please see that
patch for more context. The second being r344013.
The intent is to make the output of printing a LocationSize more
precise. The main motivation for this is that we plan to add a bit to
distinguish whether a given LocationSize is an upper-bound or is
precise; making that information available in pretty-printing is nice.
llvm-svn: 344108
prefix.
Use this to direct these files to a specific location in the test suite
so that we don't write files out to random directories (or fail if the
working directory isn't writable).
llvm-svn: 344014
This is the second in a series of changes intended to make
https://reviews.llvm.org/D44748 more easily reviewable. Please see that
patch for more context. The first change being r344012.
Since I was requested to do all of this with post-commit review, this is
about as small as I can make this patch.
This patch makes LocationSize into an actual type that wraps a uint64_t;
users are required to call getValue() in order to get the size now. If
the LocationSize has an Unknown size (e.g. if LocSize ==
MemoryLocation::UnknownSize), getValue() will assert.
This also adds DenseMap specializations for LocationInfo, which required
taking two more values from the set of values LocationInfo can
represent. Hence, heavy users of multi-exabyte arrays or structs may
observe slightly lower-quality code as a result of this change.
The intent is for getValue()s to be very close to a corresponding
hasValue() (which is often spelled `!= MemoryLocation::UnknownSize`).
Sadly, small diff context appears to crop that out sometimes, and the
last change in DSE does require a bit of nonlocal reasoning about
control-flow. :/
This also removes an assert, since it's now redundant with the assert in
getValue().
llvm-svn: 344013
This is one of a series of changes intended to make
https://reviews.llvm.org/D44748 more easily reviewable. Please see that
patch for more context.
Since I was requested to do all of this with post-commit review, this is
about as small as I can make it (beyond committing changes to these few
files separately, but they're incredibly similar in spirit, so...)
On its own, this change doesn't make a great deal of sense. I plan on
having a follow-up Real Soon Now(TM) to make the bits here make more
sense. :)
In particular, the next change in this series is meant to make
LocationSize an actual type, which you have to call .getValue() on in
order to get at the uint64_t inside. Hence, this change refactors code
so that:
- we only need to call the soon-to-come getValue() once in most cases,
and
- said call to getValue() happens very closely to a piece of code that
checks if the LocationSize has a value (e.g. if it's != UnknownSize).
llvm-svn: 344012
This patch fixes PR39099.
When strided loads are predicated, each of them will form an interleaved-group
(with gaps). However, subsequent stages of vectorization (planning and
transformation) assume that if a load is part of an Interleave-Group it is not
predicated, resulting in wrong code - unmasked wide loads are created.
The Interleaving Analysis does take care not to have conditional interleave
groups of size > 1, but until we extend the planning and transformation stages
to support masked-interleave-groups we should also avoid having them for
size == 1.
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D52682
llvm-svn: 343931
Call getOperandInfo() instead of using (near) duplicated code in
LoopVectorizationCostModel::getInstructionCost().
This gets the OperandValueKind and OperandValueProperties values for a Value
passed as operand to an arithmetic instruction.
getOperandInfo() used to be a static method in TargetTransformInfo.cpp, but
is now instead a public member.
Review: Florian Hahn
https://reviews.llvm.org/D52883
llvm-svn: 343852
Summary:
This CL allows constant vectors of floats to be recognized as non-NaN
and non-zero in select patterns. This change makes
`matchSelectPattern` more powerful generally, but was motivated
specifically because I wanted fminnan and fmaxnan to be created for
vector versions of the scalar patterns they are created for.
Tested with check-all on all targets. A testcase in the WebAssembly
backend that tests the non-nan codepath is in an upcoming CL.
Reviewers: aheejin, dschuff
Subscribers: sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D52324
llvm-svn: 343364
Summary:
Add a dominance check to ensure that the possible devirtualizable
call is actually dominated by the type test/checked load intrinsic being
analyzed. With PGO, after indirect call promotion is performed during
the compile step, followed by inlining, we may have a type test in the
promoted and inlined sequence that allows an indirect call in that
sequence to be devirtualized. That indirect call (inserted by inlining
after promotion) will share the same vtable pointer as the fallback
indirect call that cannot be devirtualized.
Before this patch the code was incorrectly devirtualizing the fallback
indirect call.
See the new test and the example described there for more details.
Reviewers: pcc, vitalybuka
Subscribers: mehdi_amini, Prazek, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D52514
llvm-svn: 343226
Summary:
We are overly conservative in loop vectorizer with respect to stores to loop
invariant addresses.
More details in https://bugs.llvm.org/show_bug.cgi?id=38546
This is the first part of the fix where we start with vectorizing loop invariant
values to loop invariant addresses.
This also includes changes to ORE for stores to invariant address.
Reviewers: anemet, Ayal, mkuper, mssimpso
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50665
llvm-svn: 343028
Implementing -print-before-all/-print-after-all/-filter-print-func support
through PassInstrumentation callbacks.
- PrintIR routines implement printing callbacks.
- StandardInstrumentations class provides a central place to manage all
the "standard" in-tree pass instrumentations. Currently it registers
PrintIR callbacks.
Reviewers: chandlerc, paquette, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D50923
llvm-svn: 342896
Summary:
his code was in CGDecl.cpp and really belongs in LLVM's isBytewiseValue. Teach isBytewiseValue the tricks clang's isRepeatedBytePattern had, including merging undef properly, and recursing on more types.
clang part of this patch: D51752
Subscribers: dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D51751
llvm-svn: 342709
Summary:
rL323619 marks functions that are calling va_end as not viable for
inlining. This patch reverses that since this va_end doesn't need
access to the vriadic arguments list that are saved on the stack, only
va_start does.
Reviewers: efriedma, fhahn
Reviewed By: fhahn
Subscribers: eraman, haicheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D52067
llvm-svn: 342675
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Made getName helper to return std::string (instead of StringRef initially) to fix
asan builtbot failures on CGSCC tests.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342664
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342597
Summary:
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342544
getLoopID has different control flow for two cases: If there is a
single loop latch and for any other number of loop latches (0 and more
than one). The latter case should return the same result if there is
only a single latch. We can save the preceding redundant search for a
latch by handling both cases with the same code.
Differential Revision: https://reviews.llvm.org/D52118
llvm-svn: 342406
Move the 2 classes out of LoopVectorize.cpp to make it easier to re-use
them for VPlan outside LoopVectorize.cpp
Reviewers: Ayal, mssimpso, rengolin, dcaballe, mkuper, hsaito, hfinkel, xbolva00
Reviewed By: rengolin, xbolva00
Differential Revision: https://reviews.llvm.org/D49488
llvm-svn: 342027
This fixes a layering violation:
Analysis/IVDescrtors.cpp can't include Transforms/Utils/BasicBlockUtils.h,
since TransformUtils depends on Analysis.
llvm-svn: 342024
Summary:
The InductionDescriptor and RecurrenceDescriptor classes basically analyze the IR to identify the respective IVs. So, it is better to have them in the "Analysis" directory instead of the "Transforms" directory.
The rationale for this is to make the Induction and Recurrence descriptor classes available for analysis passes. Currently including them in an analysis pass produces link error (http://lists.llvm.org/pipermail/llvm-dev/2018-July/124456.html).
Induction and Recurrence descriptors are moved from Transforms/Utils/LoopUtils.h|cpp to Analysis/IVDescriptors.h|cpp.
Reviewers: dmgreen, llvm-commits, hfinkel
Reviewed By: dmgreen
Subscribers: mgorny
Differential Revision: https://reviews.llvm.org/D51153
llvm-svn: 342016
Fix for https://bugs.llvm.org/show_bug.cgi?id=38807, which occurred
while compiling SemaTemplateInstantiate.cpp with clang and GVNHoist
enabled. In the following example:
1=def(entry)
/ \
2=def(1) 4=def(1)
3=def(2) 5=def(4)
When removing the MemoryDef 2=def(1) from its basic block, and just
before adding it to the end of the parent basic block, we first
replace all its uses with the defining memory access:
3=def(2) -> 3=def(1)
Then we call insertDef for adding 2=def(1) to the parent basic block,
where we replace the uses of 1=def(entry) with 2=def(1). Doing so we
create a self reference:
2=def(1) -> 2=def(2) (bad)
3=def(1) -> 3=def(2) (ok)
4=def(1) -> 4=def(2) (ok)
Differential Revision: https://reviews.llvm.org/D51801
llvm-svn: 341947
The previous implementation traversed all loop blocks and bailed if one
was not a latch block. Since we are only interested in latch blocks, we
should only traverse those.
llvm-svn: 341926
This patch does the following things:
1. update SymbolicallyEvaluateGEP so that it bails out if it cannot preserve inrange arribute;
2. update llvm/test/Analysis/ConstantFolding/gep.ll to remove UB in it;
3. remove inaccurate comment above ConstantFoldInstOperandsImpl in llvm/lib/Analysis/ConstantFolding.cpp;
4. add a new regression test that makes sure that no optimizations change an inrange GEP in an unexpected way.
Patch by Zhaomo Yang!
Differential Revision: https://reviews.llvm.org/D51698
llvm-svn: 341888
Summary:
End goal is to update MemorySSA in all loop passes. LoopUnswitch clones all blocks in a loop. SimpleLoopUnswitch clones some blocks. LoopRotate clones some instructions.
Some of these loop passes also make CFG changes.
This is an API based on what I found needed in LoopUnswitch, SimpleLoopUnswitch, LoopRotate, LoopInstSimplify, LoopSimplifyCFG.
Adding dependent patches using this API for context.
Reviewers: george.burgess.iv, dberlin
Subscribers: sanjoy, jlebar, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D45299
llvm-svn: 341855
The only point to this change is the test diffs. When I remove this code entirely (in favor of the recently added generic handling), I don't want there to be any confusion due to spurious test diffs.
As an aside, the fact out tests are AST construction order dependent is not great. I thought about fixing that, but the reasonable schemes I might want (e.g. sort by name) need the test diffs anyways.
Philip
llvm-svn: 341841
AliasSetTracker has special case handling for memset, memcpy and memmove which pre-existed argmemonly on functions and readonly and writeonly on arguments. This patch generalizes it using the AA infrastructure to any call correctly annotated.
The motivation here is to cut down on confusion, not performance per se. For most instructions, there is a direct mapping to alias set. However, this is not guaranteed by the interface and was not in fact true for these three intrinsics *and only these three intrinsics*. I kept getting myself confused about this invariant, so I figured it would be good to clearly distinguish between a instructions and alias sets. Calls happened to be an easy target.
The nice side effect is that custom implementations of memset/memcpy/memmove - including wrappers discovered by IPO - can now be optimized the same as builts by LICM.
Note: The actual removal of the memset/memtransfer specific handling will happen in a follow on NFC patch. It was originally part of this one, but separate for ease of review and rebase.
Differential Revision: https://reviews.llvm.org/D50730
llvm-svn: 341713
Summary:
Block splitting is done with either identical edges being merged, or not.
Only critical edges can be split without merging identical edges based on an option.
Teach the memoryssa updater to take this into account: for the same edge between two blocks only move one entry from the Phi in Old to the new Phi in New.
Reviewers: george.burgess.iv
Subscribers: sanjoy, jlebar, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D51563
llvm-svn: 341709
This patch adds per-function size information remarks. Previously, passing
-Rpass-analysis=size-info would only give you per-module changes. By adding
the ability to do this per-function, it's easier to see which functions
contributed the most to size changes.
https://reviews.llvm.org/D51467
llvm-svn: 341588
Currently it has a set KnownBlocks that marks blocks as having cached
answers and a map FirstSpecialInsts that maps these blocks to first
special instructions in them. The value in the map is always non-null,
and for blocks that are known to have no special instructions the map
does not have an instance.
This patch removes KnownBlocks as obsolete. Instead, for blocks that
are known to have no special instructions, we just put a nullptr value.
This makes the code much easier to read.
llvm-svn: 341531
This validation patch has been reverted as rL341147 because of conserns raised by
@reames. This revision returns it as is to raise a discussion and address the concerns.
Differential Revision: https://reviews.llvm.org/D51523
Reviewed By: reames
llvm-svn: 341526
In basic block, loop, and function passes, we already have a function that
we can use to emit optimization remarks. We can use that instead of searching
the module for the first suitable function (that is, one that contains at
least one basic block.)
llvm-svn: 341253
Instead of counting the size of the entire module every time we run a pass,
pass along a delta instead and use that to emit the remark.
This means we only have to use (on average) smaller IR units to calculate
instruction counts. E.g, in a BB pass, we only need to look at the delta of
the BB instead of the delta of the entire module.
6/6
(This improved compile time for size remarks on sqlite3 + O2 significantly)
llvm-svn: 341250
Same vein as the previous commits. Pre-calculate the size of
the module and use that to decide if we're going to emit a
remark.
This one comes with a FIXME and TODO. First off, CallGraphSCC
and CallGraphNode don't have a getInstructionCount function. So,
for now, we do the same thing as in a module pass.
Second off, we're not really saving anything here yet, because
as before, I need to change emitInstrCountChangedRemark to take
in a delta. Keeping the patches small though, so that's coming up
next.
5/6
llvm-svn: 341249
Another commit reducing compile time in size remarks.
Cache the size of the module and loop, and update values based
off of deltas instead. Avoid recalculating the size of the
whole module whenever possible.
3/6
llvm-svn: 341247
Summary:
This is patch 1 of the new DivergenceAnalysis (https://reviews.llvm.org/D50433).
The purpose of this patch is to free up the name DivergenceAnalysis for the new generic
implementation. The generic implementation class will be shared by specialized
divergence analysis classes.
Patch by: Simon Moll
Reviewed By: nhaehnle
Subscribers: jvesely, jholewinski, arsenm, nhaehnle, mgorny, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D50434
Change-Id: Ie8146b11be2c50d5312f30e11c7a3036a15b48cb
llvm-svn: 341071
These classes don't make any changes to IR and have no reason to be in
Transform/Utils. This patch moves them to Analysis folder. This will allow
us reusing these classes in some analyzes, like MustExecute.
llvm-svn: 341015
rL340921 has been reverted by rL340923 due to linkage dependency
from Transform/Utils to Analysis which is not allowed. In this patch
this has been fixed, a new utility function moved to Analysis.
Differential Revision: https://reviews.llvm.org/D51152
llvm-svn: 341014
Teach LICM to hoist stores out of loops when the store writes to a location otherwise unused in the loop, writes a value which is invariant, and is guaranteed to execute if the loop is entered.
Worth noting is that this transformation is partially overlapping with the existing promotion transformation. Reasons this is worthwhile anyway include:
* For multi-exit loops, this doesn't require duplication of the store.
* It kicks in for case where we can't prove we exit through a normal exit (i.e. we may throw), but can prove the store executes before that possible side exit.
Differential Revision: https://reviews.llvm.org/D50925
llvm-svn: 340974
We have multiple places in code where we try to identify whether or not
some instruction is a guard. This patch factors out this logic into a separate
utility function which works uniformly in all places.
Differential Revision: https://reviews.llvm.org/D51152
Reviewed By: fedor.sergeev
llvm-svn: 340921
Moving PassTimingInfo from legacy pass manager code into a separate header.
Making it suitable for both legacy and new pass manager.
Adding a test on -time-passes main functionality.
llvm-svn: 340872
Summary:
Correct to use set like behaviour of AllocType. Should check for
subset, not precise value.
Reviewers: theraven
Reviewed By: theraven
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D50959
llvm-svn: 340807
verify*() methods are intended to have no side-effects (unless we detect
broken MSSA, in which case they assert()), and all of the other verify
methods are wrapped by `#ifndef NDEBUG`.
llvm-svn: 340793
This reverts r319889.
Unfortunately, wrapping flags are not a part of SCEV's identity (they
do not participate in computing a hash value or in equality
comparisons) and in fact they could be assigned after the fact w/o
rebuilding a SCEV.
Grep for const_cast's to see quite a few of examples, apparently all
for AddRec's at the moment.
So, if 2 expressions get built in 2 slightly different ways: one with
flags set in the beginning, the other with the flags attached later
on, we may end up with 2 expressions which are exactly the same but
have their operands swapped in one of the commutative N-ary
expressions, and at least one of them will have "sorted by complexity"
invariant broken.
2 identical SCEV's won't compare equal by pointer comparison as they
are supposed to.
A real-world reproducer is added as a regression test: the issue
described causes 2 identical SCEV expressions to have different order
of operands and therefore compare not equal, which in its turn
prevents LoadStoreVectorizer from vectorizing a pair of consecutive
loads.
On a larger example (the source of the test attached, which is a
bugpoint) I have seen even weirder behavior: adding a constant to an
existing SCEV changes the order of the existing terms, for instance,
getAddExpr(1, ((A * B) + (C * D))) returns (1 + (C * D) + (A * B)).
Differential Revision: https://reviews.llvm.org/D40645
llvm-svn: 340777
This is a bit awkward in a handful of places where we didn't even have
an instruction and now we have to see if we can build one. But on the
whole, this seems like a win and at worst a reasonable cost for removing
`TerminatorInst`.
All of this is part of the removal of `TerminatorInst` from the
`Instruction` type hierarchy.
llvm-svn: 340701
The core get and set routines move to the `Instruction` class. These
routines are only valid to call on instructions which are terminators.
The iterator and *generic* range based access move to `CFG.h` where all
the other generic successor and predecessor access lives. While moving
the iterator here, simplify it using the iterator utilities LLVM
provides and updates coding style as much as reasonable. The APIs remain
pointer-heavy when they could better use references, and retain the odd
behavior of `operator*` and `operator->` that is common in LLVM
iterators. Adjusting this API, if desired, should be a follow-up step.
Non-generic range iteration is added for the two instructions where
there is an especially easy mechanism and where there was code
attempting to use the range accessor from a specific subclass:
`indirectbr` and `br`. In both cases, the successors are contiguous
operands and can be easily iterated via the operand list.
This is the first major patch in removing the `TerminatorInst` type from
the IR's instruction type hierarchy. This change was discussed in an RFC
here and was pretty clearly positive:
http://lists.llvm.org/pipermail/llvm-dev/2018-May/123407.html
There will be a series of much more mechanical changes following this
one to complete this move.
Differential Revision: https://reviews.llvm.org/D47467
llvm-svn: 340698
The way that PhiValues is integrated with BasicAA it is possible for a pass
which uses BasicAA to pick up an instance of BasicAA that uses PhiValues without
intending to, and then delete values from a function in a way that causes
PhiValues to return dangling pointers to these deleted values. Fix this by
having a set of callback value handles to invalidate values when they're
deleted.
llvm-svn: 340613
We need to allow ConstantExpr Selects in addition to SelectInst.
I'll try to put together a test case, but I wanted to fix the issues being reported.
Fixes PR38677
llvm-svn: 340546
If we have a min/max pair we can do a better job of counting sign bits if we look at them together. This is similar to what is done in the SelectionDAG version of computeNumSignBits for ISD::SMAX/SMIN.
Differential Revision: https://reviews.llvm.org/D51112
llvm-svn: 340480
We're currently getting this behavior implicitly, since we determine if
a Def's optimization is valid based on the ID of its defining access.
This is incorrect, though I wouldn't be surprised if this was masked in
part by that we're using a WeakVH to track what Defs are optimized to.
(Not to mention that we don't move Defs super often, AFAICT). I'll
submit a patch to fix this shortly.
This also includes a minor refactor to reduce duplication a bit.
No test is included, since like said, this already happens to be our
behavior. I'll add a test for this with my fix to the other bug
mentioned above.
llvm-svn: 340461
There's no need to track a seperate variable for argmemonly aliasing. This falls out naturally of the modinfo union. Note that we may return earlier than we would have earlier if all arguments are explicitly readnone. The overall result doesn't change, just how we get there.
llvm-svn: 340443
We're calling these functions quite a bit from outside of MemorySSA.cpp
now. Given that they're relatively simple one-liners, I think the style
preference is to have them inline.
llvm-svn: 340430
Volatility is not an aliasing property. We used to model volatile as if it had extremely conservative aliasing implications, but that hasn't been true for several years now. So, it doesn't make sense to be in AliasSet.
It also turns out the code is entirely a noop. Outside of the AST code to update it, there was only one user: load store promotion in LICM. L/S promotion doesn't need the check since it walks all the users of the address anyway. It already checks each load or store via !isUnordered which causes us to bail for volatile accesses. (Look at the lines immediately following the two remove asserts.)
There is the possibility of some small compile time impact here, but the only case which will get noticeably slower is a loop with a large number of loads and stores to the same address where only the last one we inspect is volatile. This is sufficiently rare it's not worth optimizing for..
llvm-svn: 340312
Remove duplicate tests from InstCombine that were added with
D50582. I left negative tests there to verify that nothing
in InstCombine tries to go overboard. If isKnownNeverNaN is
improved to handle the FP binops or other cases, we should
have coverage under InstSimplify, so we could remove more
duplicate tests from InstCombine at that time.
llvm-svn: 340279
These intrinsics are modelled as writing for control flow purposes, but they don't actually write to any location. Marking these - as we did for guards - allows LICM to hoist loads out of loops containing invariant.starts.
Differential Revision: https://reviews.llvm.org/D50861
llvm-svn: 340245
Summary:
Create the ability to compute IDF using a CFG View.
For this, we'll need a new DT created using a list of Updates (to be refactored later to a GraphDiff), and the GraphTraits based on the same GraphDiff.
Reviewers: kuhar, george.burgess.iv, mzolotukhin
Subscribers: sanjoy, jlebar, llvm-commits
Differential Revision: https://reviews.llvm.org/D50675
llvm-svn: 340052
NewGVN uses InstructionSimplify for simplifications of leaders of
congruence classes. It is not guaranteed that the metadata or other
flags/keywords (like nsw or exact) of the leader is available for all members
in a congruence class, so we cannot use it for simplification.
This patch adds a InstrInfoQuery struct with a boolean field
UseInstrInfo (which defaults to true to keep the current behavior as
default) and a set of helper methods to get metadata/keywords for a
given instruction, if UseInstrInfo is true. The whole thing might need a
better name, to avoid confusion with TargetInstrInfo but I am not sure
what a better name would be.
The current patch threads through InstrInfoQuery to the required
places, which is messier then it would need to be, if
InstructionSimplify and ValueTracking would share the same Query struct.
The reason I added it as a separate struct is that it can be shared
between InstructionSimplify and ValueTracking's query objects. Also,
some places do not need a full query object, just the InstrInfoQuery.
It also updates some interfaces that do not take a Query object, but a
set of optional parameters to take an additional boolean UseInstrInfo.
See https://bugs.llvm.org/show_bug.cgi?id=37540.
Reviewers: dberlin, davide, efriedma, sebpop, hiraditya
Reviewed By: hiraditya
Differential Revision: https://reviews.llvm.org/D47143
llvm-svn: 340031
This is another step towards being able to canonicalize to the funnel shift
intrinsics in IR (see D49242 for the initial patch).
We should not have any loss of simplification power in IR between these and
the equivalent IR constructs.
Differential Revision: https://reviews.llvm.org/D50848
llvm-svn: 340022
The description of `isGuaranteedToExecute` does not correspond to its implementation.
According to description, it should return `true` if an instruction is executed under the
assumption that its loop is *entered*. However there is a sophisticated alrogithm inside
that tries to prove that the instruction is executed if the loop is *exited*, which is not the
same thing for infinite loops. There is an attempt to protect from dealing with infinite loops
by prohibiting loops without exit blocks, however an infinite loop can have exit blocks.
As result of that, MustExecute can falsely consider some blocks that are never entered as
mustexec, and LICM can hoist dangerous instructions out of them basing on this fact.
This may introduce UB to programs which did not contain it initially.
This patch removes the problematic algorithm and replaced it with a one which tries to
prove what is required in description.
Differential Revision: https://reviews.llvm.org/D50558
Reviewed By: reames
llvm-svn: 339984
The fix is fairly simple, but is says something unpleasant about the usage and testing of invariant.start/end scopes that this went undetected. To put this in perspective, *any* invariant.end in a loop flowing through LICM crashed. I haven't bothered to figure out just how far back this goes, but it's not caused by any of the recent changes. We're probably talking months if not years.
llvm-svn: 339936
Main value is just simplifying code. I'll further simply the argument handling case in a bit, but that involved a slightly orthogonal change so I went with the mildy ugly intermediate for this patch.
Note that the isSized check in the old LICM code was not carried across. It turns out that check was dead. a) no test exercised it, and b) langref and verifier had been updated to disallow unsized types used in loads.
llvm-svn: 339930
Summary:
Profile count of a block is computed by multiplying its block frequency
by entry count and dividing the result by entry block frequency. Do
rounded division in the last step and update test cases appropriately.
Reviewers: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50822
llvm-svn: 339835
Summary: Expose VerifyMemorySSA as a debug option. If set, passes will call the MSSA->verifyMemorySSA() after calling into the updater's APIs when MemorySSA should be valid.
Reviewers: george.burgess.iv
Subscribers: sanjoy, jlebar, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D50749
llvm-svn: 339795
The `experimental_guard` intrinsic has memory write semantics to model the thread-exiting
logic, but does not do any actual writes to memory. Currently, `AliasSetTracker` treats it as a
normal memory write. As result, a loop-invariant load cannot be hoisted out of loop because
the guard may possibly alias with it.
This patch makes `AliasSetTracker` so that it doesn't treat guards as memory writes.
Differential Revision: https://reviews.llvm.org/D50497
Reviewed By: reames
llvm-svn: 339753
Summary:
Calls marked 'tail' cannot read or write allocas from the current frame
because the current frame might be destroyed by the time they run.
However, a tail call may use an alloca with byval. Calling with byval
copies the contents of the alloca into argument registers or stack
slots, so there is no lifetime issue. Tail calls never modify allocas,
so we can return just ModRefInfo::Ref.
Fixes PR38466, a longstanding bug.
Reviewers: hfinkel, nlewycky, gbiv, george.burgess.iv
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D50679
llvm-svn: 339636
Summary:
We've supported constant folding for sse versions for many years. This patch adds support for the avx512 versions including unsigned with the default rounding mode. We could probably do more with other roundings modes and SAE in the future.
The test cases are largely based on the sse.ll test cases. But I did add some test cases to ensure the unsigned versions don't accept negative values. Also checked the bounds of f64->i32 conversions to make sure unsigned has a larger positive range than signed.
Reviewers: RKSimon, spatel, chandlerc
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50553
llvm-svn: 339529
MemorySSA currently creates MemoryAccesses for lifetime intrinsics, and
sometimes treats them as clobbers. This may/may not be the best way
forward, but while we're doing it, we should consider
MayAlias/PartialAlias to be clobbers.
The ideal fix here is probably to remove all of this reasoning about
lifetimes from MemorySSA + put it into the passes that need to care. But
that's a wayyy broader fix that needs some consensus, and we have
miscompiles + a release branch today, and this should solve the
miscompiles just as well.
differential revision is D43269. Landing without an explicit LGTM (and
without using the special please-autoclose-this syntax) so we can still
use that revision as a place to decide what the right fix here is.
llvm-svn: 339411
getOrCompHotCountThreshold/getOrCompColdCountThreshold introduced in
https://reviews.llvm.org/D45377 contain a bad mistake and will only return 1 or 0
instead of the true hot/cold cutoff value. The patch fixes the mistake. But the
mistake seems not causing big performance difference according to internal server
benchmarks testing.
Differential Revision: https://reviews.llvm.org/D50370
llvm-svn: 339162
The patch was reverted because of bug detected by sanitizer. The bug is fixed,
respective tests added.
Differential Revision: https://reviews.llvm.org/D50172
llvm-svn: 339005
Multiple failues reported by sanitizer-x86_64-linux, seem to be caused by this
patch. Reverting to see if they sustain without it.
Differential Revision: https://reviews.llvm.org/D50172
llvm-svn: 338994
`isKnownNonNullFromDominatingCondition` is able to prove non-null basing on `br` or `guard`
by `%p != null` condition, but is unable to do so basing on `(%p != null) && %other_cond`.
This patch allows it to do so.
Differential Revision: https://reviews.llvm.org/D50172
Reviewed By: reames
llvm-svn: 338990
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.
Patch by: yrouban (Yevgeny Rouban)
Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00
Reviewed By: tejohnson, xbolva00
Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith
Differential Revision: https://reviews.llvm.org/D49412
llvm-svn: 338969
This is the second patch of the series which intends to enable jump threading for an inlined method whose return type is std::pair<int, bool> or std::pair<bool, int>.
The first patch is https://reviews.llvm.org/rL338485.
This patch handles code sequences that merges two values using `shl` and `or`, then extracts one value using `and`.
Differential Revision: https://reviews.llvm.org/D49981
llvm-svn: 338817
This adds the NAN checks suggested in PR37776:
https://bugs.llvm.org/show_bug.cgi?id=37776
If both operands to maxnum are NAN, that should get constant folded, so we don't
have to handle that case. This is the same assumption as other FP ops in this
function. Returning 'false' is always conservatively correct.
Copying from the bug report:
Currently, we have this for "when is cannotBeOrderedLessThanZero
(mustBePositiveOrNaN) true for maxnum":
L
-------------------
| Pos | Neg | NaN |
------------------------
|Pos | x | x | x |
------------------------
R |Neg | x | | x |
------------------------
|NaN | x | x | x |
------------------------
The cases with (Neg & NaN) are wrong. We should have:
L
-------------------
| Pos | Neg | NaN |
------------------------
|Pos | x | x | x |
------------------------
R |Neg | x | | |
------------------------
|NaN | x | | x |
------------------------
Differential Revision: https://reviews.llvm.org/D50081
llvm-svn: 338716