This patch implements initial backend support for a -mtune CPU controlled by a "tune-cpu" function attribute. If the attribute is not present X86 will use the resolved CPU from target-cpu attribute or command line.
This patch adds MC layer support a tune CPU. Each CPU now has two sets of features stored in their GenSubtargetInfo.inc tables . These features lists are passed separately to the Processor and ProcessorModel classes in tablegen. The tune list defaults to an empty list to avoid changes to non-X86. This annoyingly increases the size of static tables on all target as we now store 24 more bytes per CPU. I haven't quantified the overall impact, but I can if we're concerned.
One new test is added to X86 to show a few tuning features with mismatched tune-cpu and target-cpu/target-feature attributes to demonstrate independent control. Another new test is added to demonstrate that the scheduler model follows the tune CPU.
I have not added a -mtune to llc/opt or MC layer command line yet. With no attributes we'll just use the -mcpu for both. MC layer tools will always follow the normal CPU for tuning.
Differential Revision: https://reviews.llvm.org/D85165
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
Partial write %PSR (WRPSR) is a SPARC V8e option that allows WRPSR
instructions to only affect the %PSR.ET field. It is supported by
the GR740 and GR716.
Reviewers: jyknight, venkatra
Subscribers: fedor.sergeev, jrtc27, llvm-commits
Differential Revision: https://reviews.llvm.org/D48644
llvm-svn: 343202
Summary: The GR740 provides an up cycle counter in the registers ASR22
and ASR23. As these registers can not be read together atomically we only
use the value of ASR23 for llvm.readcyclecounter(). The ASR23 register
holds the 32 LSBs of the up-counter.
Reviewers: jyknight, venkatra
Reviewed By: jyknight
Subscribers: jfb, fedor.sergeev, jrtc27, llvm-commits
Differential Revision: https://reviews.llvm.org/D48638
llvm-svn: 340733
Summary: The GR740 provides an up cycle counter in the
registers ASR22 and ASR23. As these registers can not be
read together atomically we only use the value of ASR23
for llvm.readcyclecounter(). The ASR23 register holds the
32 LSBs of the up-counter.
Reviewers: jyknight, venkatra
Reviewed By: jyknight
Subscribers: fedor.sergeev, jrtc27, llvm-commits
Differential Revision: https://reviews.llvm.org/D48638
llvm-svn: 339551
Summary:
Reading Atmel's AT697E errata document this does not seem like a valid
workaround. While the text only mentions SDIV, it says that the ICC flags
can be wrong, and those are only generated by SDIVcc. Verification on
hardware shows that simply replacing SDIV with SDIVcc does not avoid
the bug with negative operands.
This reverts r283727.
Reviewers: lero_chris, jyknight
Reviewed By: jyknight
Subscribers: fedor.sergeev, jrtc27, llvm-commits
Differential Revision: https://reviews.llvm.org/D45813
llvm-svn: 330397
Initialize IsVis2 and IsVis3 in SparcSubtarget::initializeSubtargetDependencies.
MSan detected uninitialized read of IsVis3 after r318704. Initializing the
variables to false will prevent undefined behavior.
llvm-svn: 318724
Summary:
Also enable no-fsmuld for sparcv7 (which doesn't have the
instruction).
The previous code which used a post-processing pass to do this was
unnecessary; disabling the instruction is entirely sufficient.
Reviewers: jacob_hansen, ekedaigle
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D35576
llvm-svn: 308661
...and the two followup commits:
Revert "[Sparc][Leon] Missed resetting option flags from check-in 278489."
Revert "[Sparc][Leon] Errata fixes for various errata in different
versions of the Leon variants of the Sparc 32 bit processor."
This reverts commit r274856, r278489, and r278492.
llvm-svn: 278511
The nature of the errata are listed in the comments preceding the errata fix passes. Relevant unit tests are implemented for each of these.
These changes update older versions of these errata fixes with improvements to code and unit tests.
Differential Revision: https://reviews.llvm.org/D21960
llvm-svn: 278489
Errata fixes for various errata in different versions of the Leon variants of the Sparc 32 bit processor.
The nature of the errata are listed in the comments preceding the errata fix passes. Relevant unit tests are implemented for each of these.
Note: Running clang-format has changed a few other lines too, unrelated to the implemented errata fixes. These have been left in as this keeps the code formatting consistent.
Differential Revision: http://reviews.llvm.org/D21960
llvm-svn: 274856
Passes to fix three hardware errata that appear on some LEON processor variants.
The instructions FSMULD, FMULS and FDIVS do not work as expected on some LEON processors. This change allows those instructions to be substituted for alternatives instruction sequences that are known to work.
These passes only run when selected individually, or as part of a processor defintion. They are not included in general SPARC processor compilations for non-LEON processors or for those LEON processors that do not have these hardware errata.
llvm-svn: 273108
Due to an erratum in some versions of LEON, we must insert a NOP after any LD or LDF instruction to ensure the processor has time to load the value correctly before using it. This pass will implement that erratum fix.
The code will have no effect for other Sparc, but non-LEON processors.
Differential Review: http://reviews.llvm.org/D20353
llvm-svn: 270417
This change adds support for software floating point operations for Sparc targets.
This is the first in a set of patches to enable software floating point on Sparc. The next patch will enable the option to be used with Clang.
Differential Revision: http://reviews.llvm.org/D19265
llvm-svn: 269892
This change adds SMAC (signed multiply-accumulate) and UMAC (unsigned multiply-accumulate) for LEON subtargets of the Sparc processor.
The new files LeonFeatures.td and leon-instructions.ll will both be expanded in future, so I want to leave them separate as small files for this review, to be expanded in future check-ins.
Note: The functions are provided only for inline-assembly provision. No DAG selection is provided.
Differential Revision: http://reviews.llvm.org/D19911
llvm-svn: 268908
This patch changes the TargetMachine arguments to be const. This is
required for {D19265}, and was requested to be done in a separate patch.
Patch by Jacob Hansen!
Differential Revision: http://reviews.llvm.org/D19797
llvm-svn: 268389
Summary:
This is the first patch in the series to migrate Triple's (which are ambiguous)
to TargetTuple's (which aren't).
For the moment, TargetTuple simply passes all requests to the Triple object it
holds. Once it has replaced Triple, it will start to implement the interface in
a more suitable way.
This change makes some changes to the public C++ API. In particular,
InitMCSubtargetInfo(), createMCRelocationInfo(), and createMCSymbolizer()
now take TargetTuples instead of Triples. The other public C++ API's have
been left as-is for the moment to reduce patch size.
This commit also contains a trivial patch to clang to account for the C++ API
change. Thanks go to Pavel Labath for fixing LLDB for me.
Reviewers: rengolin
Subscribers: jyknight, dschuff, arsenm, rampitec, danalbert, srhines, javed.absar, dsanders, echristo, emaste, jholewinski, tberghammer, ted, jfb, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10969
llvm-svn: 247692
Summary:
This is the first patch in the series to migrate Triple's (which are ambiguous)
to TargetTuple's (which aren't).
For the moment, TargetTuple simply passes all requests to the Triple object it
holds. Once it has replaced Triple, it will start to implement the interface in
a more suitable way.
This change makes some changes to the public C++ API. In particular,
InitMCSubtargetInfo(), createMCRelocationInfo(), and createMCSymbolizer()
now take TargetTuples instead of Triples. The other public C++ API's have
been left as-is for the moment to reduce patch size.
This commit also contains a trivial patch to clang to account for the C++ API
change.
Reviewers: rengolin
Subscribers: jyknight, dschuff, arsenm, rampitec, danalbert, srhines, javed.absar, dsanders, echristo, emaste, jholewinski, tberghammer, ted, jfb, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10969
llvm-svn: 247683
The (mostly-deprecated) SelectionDAG-based ILPListDAGScheduler scheduler
was making poor scheduling decisions, causing high register pressure and
extraneous register spills.
Switching to the newer machine scheduler generates better code -- even
without there being a machine model defined for SPARC yet.
(Actually committing the test changes too, this time, unlike r247315)
llvm-svn: 247343
The (mostly-deprecated) SelectionDAG-based ILPListDAGScheduler scheduler
was making poor scheduling decisions, causing high register pressure and
extraneous register spills.
Switching to the newer machine scheduler generates better code -- even
without there being a machine model defined for SPARC yet.
llvm-svn: 247315
If you're going to realign %sp to get object alignment properly (which
the code does), and stack offsets and alignments are calculated going
down from %fp (which they are), then the total stack size had better
be a multiple of the alignment. LLVM did indeed ensure that.
And then, after aligning, the sparc frame code added 96 (for sparcv8)
to the frame size, making any requested alignment of 64-bytes or
higher *guaranteed* to be misaligned. The test case added with r245668
even tests this exact scenario, and asserted the incorrect behavior,
which I somehow failed to notice. D'oh.
This change fixes the frame lowering code to align the stack size
*after* adding the spill area, instead.
Differential Revision: http://reviews.llvm.org/D12349
llvm-svn: 246042
Summary:
Remove empty subclass in the process.
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren, ted
Differential Revision: http://reviews.llvm.org/D11045
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241780
Summary:
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
Reviewers: rafael
Reviewed By: rafael
Subscribers: rafael, ted, jfb, llvm-commits, rengolin, jholewinski
Differential Revision: http://reviews.llvm.org/D10311
llvm-svn: 239467
derived classes.
Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.
*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.
llvm-svn: 227113
for the Sparc port. Use the same initializeSubtargetDependencies
function to handle initialization similar to the other ports to
handle dependencies.
llvm-svn: 211811
system headers above the includes of generated '.inc' files that
actually contain code. In a few targets this was already done pretty
consistently, but it wasn't done *really* consistently anywhere. It is
strictly cleaner IMO and necessary in a bunch of places where the
DEBUG_TYPE is referenced from the generated code. Consistency with the
necessary places trumps. Hopefully the build bots are OK with the
movement of intrin.h...
llvm-svn: 206838
behavior based on other files defining DEBUG_TYPE, which means it cannot
define DEBUG_TYPE at all. This is actually better IMO as it forces folks
to define relevant DEBUG_TYPEs for their files. However, it requires all
files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't
already. I've updated all such files in LLVM and will do the same for
other upstream projects.
This still leaves one important change in how LLVM uses the DEBUG_TYPE
macro going forward: we need to only define the macro *after* header
files have been #include-ed. Previously, this wasn't possible because
Debug.h required the macro to be pre-defined. This commit removes that.
By defining DEBUG_TYPE after the includes two things are fixed:
- Header files that need to provide a DEBUG_TYPE for some inline code
can do so by defining the macro before their inline code and undef-ing
it afterward so the macro does not escape.
- We no longer have rampant ODR violations due to including headers with
different DEBUG_TYPE definitions. This may be mostly an academic
violation today, but with modules these types of violations are easy
to check for and potentially very relevant.
Where necessary to suppor headers with DEBUG_TYPE, I have moved the
definitions below the includes in this commit. I plan to move the rest
of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big
enough.
The comments in Debug.h, which were hilariously out of date already,
have been updated to reflect the recommended practice going forward.
llvm-svn: 206822