If a symbol name begins with the linker private global prefix (as
described by the DataLayout) then it should be treated as non-exported,
regardless of its LLVM IR visibility value.
This patch allows for usage of the @PLT modifier in AArch64 assembly which
lowers to an R_AARCH64_PLT32 relocation. See D81184 for handling this
relocation in lld.
Differential Revision: https://reviews.llvm.org/D81446
JITLink supports all code and relocation models, so there's no reason to
conditionalize using JITLink on the code or relocation model settings.
Clients wanting to use RTDyldObjectLinkingLayer/RuntimeDyld will now
need to use a custom object linking layer creator.
Debug sections will not be linked into the final executable and may contain
ambiguous relocations*. Skipping them avoids both some unnecessary processing
cost and the hassle of dealing with the problematic relocations.
* E.g. __debug_ranges contains non-extern relocations to the end of functions
hat begin with named symbols. Under the usual rules for interpreting non-extern
relocations these will be incorrectly associated with the following block, or
no block at all (if there is a gap between one block and the next).
Summary:
Adding in our first relocation type, and all the required plumbing to support the rest in following patches
Differential Revision: https://reviews.llvm.org/D80613
Reviewer: lhames
This patch adds a jitlink pass, 'registerELFGraphInfo', that records section
and symbol information about each LinkGraph in the llvm-jitlink session object.
This allows symbols and sections to be referred to by name in llvm-jitlink
regression tests. This will enable a testcase to be written for
https://reviews.llvm.org/D80613.
This initial implementation supports section and symbol parsing, but no
relocation support. It enables JITLink to link and execute ELF relocatable
objects that do not require relocations.
Patch by Jared Wyles. Thanks Jared!
Differential Revision: https://reviews.llvm.org/D79832
MaterializationResponsibility.
MaterializationResponsibility objects provide a connection between a
materialization process (compiler, jit linker, etc.) and the JIT state held in
the ExecutionSession and JITDylib objects. Switching to shared ownership
extends the lifetime of JITDylibs to ensure they remain accessible until all
materializers targeting them have completed. This will allow (in a follow-up
patch) JITDylibs to be removed from the ExecutionSession and placed in a
pending-destruction state while they are kept alive to communicate errors
to/from any still-runnning materialization processes. The intent is to enable
JITDylibs to be safely removed even if they have running compiles targeting
them.
Refering to the link order of a dylib better matches the terminology used in
static compilation. As upcoming patches will increase the number of places where
link order matters (for example when closing JITDylibs) it's better to get this
name change out of the way early.
Summary:
In D77860, we have changed `getSymbolFlags()` return type to `Expected<uint32_t>`.
This change helps bubble the error further up the stack.
Reviewers: jhenderson, grimar, JDevlieghere, MaskRay
Reviewed By: jhenderson
Subscribers: hiraditya, MaskRay, rupprecht, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79075
This method has been commented as deprecated for a while. Remove
it and replace all uses with the equivalent getCalledOperand().
I also made a few cleanups in here. For example, to removes use
of getElementType on a pointer when we could just use getFunctionType
from the call.
Differential Revision: https://reviews.llvm.org/D78882
This patch changes Block::removeEdge to return a valid iterator to the new next
element, and uses this to update the edge removal algorithm in
LinkGraph::splitBlock.
LLJIT::defineAbsolute did not mangle its Name argument, which is inconsistent
with the behavior of other LLJIT methods (e.g. lookup). Since it is currently
unused anyway, this commit replaces it with a generic 'define' convenience
method for adding MaterializationUnits to the main JITDylib. This simplifies
use of the generic absoluteSymbols function (as well as the symbolAlias,
reexports and other functions that generate MaterializationUnits) with LLJIT.
This removes the conditional layout of relocation_info bitfields that was
introduced in 3ccd677bf (svn r358839). The platform relocation_info
struct (defined in usr/include/mach-o/reloc.h) does not define the layout of
this struct differently on big-endian platforms and we want to keep the LLVM
and platform definitions in sync.
To fix the bug that 3ccd677bf addressed this patch modifies JITLink to construct
its relocation_info structs from the raw relocation words using shift and mask
operations.
Adds basic support for LLJITBuilder and DynamicLibrarySearchGenerator. This
allows C API clients to configure LLJIT to expose process symbols to JIT'd
code. An example of this is added in
llvm/examples/OrcV2CBindingsReflectProcessSymbols.
Add a new overload of StaticLibraryDefinitionGenerator::Load that takes a triple
argument and supports loading archives from MachO universal binaries in addition
to regular archives.
The LLI tool is updated to use this overload.
Failure to export __cxa_atexit can lead to an attempt to import a definition
from the process itself (if __cxa_atexit is referenced from another JITDylib),
but the process definition will clash with the existing non-exported definition
to produce an unexpected DuplicateDefinitionError.
This patch fixes the immediate issue by exporting __cxa_atexit. It also fixes a
bug where atexit functions in other JITDylibs were not being run by adding a
copy of run_atexits_helper to every JITDylib.
A follow up patch will deal with the bug where definition generators are called
despite a non-exported definition being present.
The MemoryBuffer::getMemBuffer method's RequiresNullTerminator parameter
defaults to true, but object files are not null terminated so we need to
explicitly pass false here.
Instead, represent the mask as out-of-line data in the instruction. This
should be more efficient in the places that currently use
getShuffleVector(), and paves the way for further changes to add new
shuffles for scalable vectors.
This doesn't change the syntax in textual IR. And I don't currently plan
to change the bitcode encoding in this patch, although we'll probably
need to do something once we extend shufflevector for scalable types.
I expect that once this is finished, we can then replace the raw "mask"
with something more appropriate for scalable vectors. Not sure exactly
what this looks like at the moment, but there are a few different ways
we could handle it. Maybe we could try to describe specific shuffles.
Or maybe we could define it in terms of a function to convert a fixed-length
array into an appropriate scalable vector, using a "step", or something
like that.
Differential Revision: https://reviews.llvm.org/D72467
This flag can be used to mark a symbol as existing only for the purpose of
enabling materialization. Such a symbol can be looked up to trigger
materialization with the lookup returning only once materialization is
complete. Symbols with this flag will never resolve however (to avoid
permanently polluting the symbol table), and should only be looked up using
the SymbolLookupFlags::WeaklyReferencedSymbol flag. The primary use case for
this flag is initialization symbols.
Summary:
Rename `succ_const_iterator` to `const_succ_iterator` and
`succ_const_range` to `const_succ_range` for consistency with the
predecessor iterators, and the corresponding iterators in
MachineBasicBlock.
Reviewers: nicholas, dblaikie, nlewycky
Subscribers: hiraditya, bmahjour, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75952
Updates the object buffer ownership scheme in jitLinkForOrc and related
functions: Ownership of both the object::ObjectFile and underlying
MemoryBuffer is passed into jitLinkForOrc and passed back to the onEmit
callback once linking is complete. This avoids the use-after-free errors
that were seen in 98f2bb4461.
Along the same lines as eb918d8daf1: This code also had to acquire the session
mutex, and this could cause a deadlock under the wrong circumstances. This
patch updates GenericLLVMIRPlatformSupport to just use the session lock for
everything.
In MachOPlatform, obtaining the link-order for a JITDylib requires locking the
session, but also needs to be part of a larger atomic operation that collates
initializer symbols tracked by the platform. Trying to do this under a separate
platform mutex leads to potential locking order issues, e.g.
T1 locks session then tries to lock platform to register a new init symbol
meanwhile
T2 locks platform then tries to lock session to obtain link order.
Removing the platform lock and performing all these operations under the session
lock eliminates this possibility.
At the same time we also need to collate init pointers from the
MachOPlatform::InitScraperPlugin, and we don't need or want to lock the session
for that. The new InitSeqMutex has been added to guard these init pointers, and
the session mutex is never obtained while the InitSeqMutex is held.
The MU may define no symbols, but still contain a non-trivial destructor (e.g.
an LLVM IR module that has been stripped of all externally visible
definitions, but which still needs to lock its context to be destroyed).
Bailing out early ensures that we destroy the unit outside the session lock,
rather than under it which may cause deadlocks.
Also adds some extra sanity-checking assertions.
Follow-up for D74433
What the function returns are almost standard BFD names, except that "ELF" is
in uppercase instead of lowercase.
This patch changes "ELF" to "elf" and changes ARM/AArch64 to use their BFD names.
MIPS and PPC64 have endianness differences as well, but this patch does not intend to address them.
Advantages:
* llvm-objdump: the "file format " line matches GNU objdump on ARM/AArch64 objects
* "file format " line can be extracted and fed into llvm-objcopy -O literally.
(https://github.com/ClangBuiltLinux/linux/issues/779 has such a use case)
Affected tools: llvm-readobj, llvm-objdump, llvm-dwarfdump, MCJIT (internal implementation detail, not exposed)
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D76046
Enable use of ExecutionEngine JITEventListeners in RTDyldObjectLinkingLayer.
This allows existing MCJIT clients to more easily migrate to LLJIT / ORCv2.
Example usage in llvm/examples/OrcV2Examples/LLJITWithGDBRegistrationListener.
Differential Revision: https://reviews.llvm.org/D75838
Global symbols with linker-private prefixes should be resolvable across object
boundaries, but internal symbols with linker-private prefixes should not.
Renames the llvm/examples/LLJITExamples directory to llvm/examples/OrcV2Examples
since it is becoming a home for all OrcV2 examples, not just LLJIT.
See http://llvm.org/PR31103.
Patch based on https://reviews.llvm.org/D75912 by Alexander Shishkin. Thanks
Alexander!
To minimize disruption to existing clients, who may be relying on the fact that
unused references to unresolved symbols do not generate an error, this patch
makes error checking opt-in: Clients can call ExecutionEngine::hasError or
LLVMExecutionEngineGetError to check whether and error has occurred.
Differential revision: https://reviews.llvm.org/D75912
This patch enables exception handling in code added to LLJIT on Darwin by
adding an orc::EHFrameRegistrationPlugin instance to the ObjectLinkingLayer
(which is currently used on Darwin only).
These may be accessed from multiple threads if concurrent materialization is
enabled in ORC.
Testcase coming in a follow-up patch that enables eh-frame registration for
LLJIT.
Summary:
Enables JIT-linking by RuntimeDyld of COFF objects that contain references to
dllimport symbols. This is done by recognizing symbols that start with the
reserved "__imp_" prefix and building a pointer entry to the target symbol in
the stubs area of the section. References to the "__imp_" symbol are updated to
point to this pointer.
Work in progress: The generic code is in place, but only RuntimeDyldCOFFX86_64
and RuntimeDyldCOFFI386 have been updated to look for and update references to
dllimport symbols.
Reviewers: compnerd
Subscribers: hiraditya, ributzka, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75884
This patch allows rtdyld-check / jitlink-check expressions to be extended over
multiple lines by terminating each line with a '\'. E.g.
# llvm-rtdyld: *{8}X = \
# llvm-rtdyld: Y
X:
.quad Y
This will be used to break up some long lines in upcoming test cases.
The LLJIT::MachOPlatformSupport class used to unconditionally attempt to
register __objc_selrefs and __objc_classlist sections. If libobjc had not
been loaded this resulted in an assertion, even if no objc sections were
actually present. This patch replaces this unconditional registration with
a check that no objce sections are present if libobjc has not been loaded.
This will allow clients to use MachOPlatform with LLJIT without requiring
libobjc for non-objc code.
Summary: Decompose callThroughToSymbol() into findReexport(), resolveSymbol(), notifyResolved() and reportCallThroughError(). This allows derived classes to reuse the functionality while adding their own code in between.
Reviewers: lhames
Reviewed By: lhames
Subscribers: hiraditya, steven_wu, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75084
ST_File symbols aren't relevant for linking purposes, but can end up shadowing
real symbols if they're not filtered.
No test case yet: The ideal testcase for this would be an ELF llvm-jitlink test,
but llvm-jitlink support for ELF is still under development. We should add a
testcase for this once support lands in tree.
reinterpret_cast'ing the block base address directly to a uint64_t leaves the
high bits in an implementation-defined state, but JITLink expects them to be
zero. Switching to pointerToJITTargetAddress for the cast should fix this.
This should fix the jitlink test failures that we have seen on some of the
32-bit testers.
Lots of headers pass around MemoryBuffer objects, but very few open
them. Let those that do include FileSystem.h.
Saves ~250 includes of Chrono.h & FileSystem.h:
$ diff -u thedeps-before.txt thedeps-after.txt | grep '^[-+] ' | sort | uniq -c | sort -nr
254 - ../llvm/include/llvm/Support/FileSystem.h
253 - ../llvm/include/llvm/Support/Chrono.h
237 - ../llvm/include/llvm/Support/NativeFormatting.h
237 - ../llvm/include/llvm/Support/FormatProviders.h
192 - ../llvm/include/llvm/ADT/StringSwitch.h
190 - ../llvm/include/llvm/Support/FormatVariadicDetails.h
...
This requires duplicating the file_t typedef, which is unfortunate. I
sunk the choice of mapping mode down into the cpp file using variable
template specializations instead of class members in headers.
Summary: A function that creates JITSymbolFlags from a GlobalValueSummary. Similar functions exist: fromGlobalValue(), fromObjectSymbol()
Reviewers: lhames
Reviewed By: lhames
Subscribers: hiraditya, steven_wu, dexonsmith, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75082
This optimization bypasses GOT loads and calls/branches through stubs when the
ultimate target of the access/branch is found to be within range of the
reference.
Extra debugging output is also added to the generic JITLink algorithm and
basic GOT and Stubs builder utility to aid debugging.
The GenericLLVMIRPlatformSupport class runs a transform on all LLVM IR added to
the LLJIT instance to replace instances of llvm.global_ctors with a specially
named function that runs the corresponing static initializers (See
(GlobalCtorDtorScraper from lib/ExecutionEngine/Orc/LLJIT.cpp). This patch
updates the GenericIRPlatform class to check for this specially named function
in other materialization units that are added to the JIT and, if found, add
the function to the initializer work queue. Doing this allows object files
that were compiled from IR and cached to be reloaded in subsequent JIT sessions
without their initializers being skipped.
To enable testing this patch also updates the lli tool's -jit-kind=orc-lazy mode
to respect the -enable-cache-manager and -object-cache-dir options, and modifies
the CompileOnDemandLayer to rename extracted submodules to include a hash of the
names of their symbol definitions. This allows a simple object caching scheme
based on module names (which was already implemented in lli) to work with the
lazy JIT.
This patch adds new errors and error checking to the ObjectLinkingLayer to
catch cases where a compiled or loaded object either:
(1) Contains definitions not covered by its responsibility set, or
(2) Is missing definitions that are covered by its responsibility set.
Proir to this patch providing the correct set of definitions was treated as
an API contract requirement, however this requires that the client be confident
in the correctness of the whole compiler / object-cache pipeline and results
in difficult-to-debug assertions upon failure. Treating this as a recoverable
error results in clearer diagnostics.
The performance overhead of this check is one comparison of densemap keys
(symbol string pointers) per linking object, which is minimal. If this overhead
ever becomes a problem we can add the check under a flag that can be turned off
if the client fully trusts the rest of the pipeline.
Initializers and deinitializers are used to implement C++ static constructors
and destructors, runtime registration for some languages (e.g. with the
Objective-C runtime for Objective-C/C++ code) and other tasks that would
typically be performed when a shared-object/dylib is loaded or unloaded by a
statically compiled program.
MCJIT and ORC have historically provided limited support for discovering and
running initializers/deinitializers by scanning the llvm.global_ctors and
llvm.global_dtors variables and recording the functions to be run. This approach
suffers from several drawbacks: (1) It only works for IR inputs, not for object
files (including cached JIT'd objects). (2) It only works for initializers
described by llvm.global_ctors and llvm.global_dtors, however not all
initializers are described in this way (Objective-C, for example, describes
initializers via specially named metadata sections). (3) To make the
initializer/deinitializer functions described by llvm.global_ctors and
llvm.global_dtors searchable they must be promoted to extern linkage, polluting
the JIT symbol table (extra care must be taken to ensure this promotion does
not result in symbol name clashes).
This patch introduces several interdependent changes to ORCv2 to support the
construction of new initialization schemes, and includes an implementation of a
backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a
MachO specific scheme that handles Objective-C runtime registration (if the
Objective-C runtime is available) enabling execution of LLVM IR compiled from
Objective-C and Swift.
The major changes included in this patch are:
(1) The MaterializationUnit and MaterializationResponsibility classes are
extended to describe an optional "initializer" symbol for the module (see the
getInitializerSymbol method on each class). The presence or absence of this
symbol indicates whether the module contains any initializers or
deinitializers. The initializer symbol otherwise behaves like any other:
searching for it triggers materialization.
(2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h
which provides the following callback interface:
- Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols
in JITDylibs upon creation. E.g. __dso_handle.
- Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally
used to record initializer symbols.
- Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform
that a module is being removed.
Platform implementations can use these callbacks to track outstanding
initializers and implement a platform-specific approach for executing them. For
example, the MachOPlatform installs a plugin in the JIT linker to scan for both
__mod_inits sections (for C++ static constructors) and ObjC metadata sections.
If discovered, these are processed in the usual platform order: Objective-C
registration is carried out first, then static initializers are executed,
ensuring that calls to Objective-C from static initializers will be safe.
This patch updates LLJIT to use the new scheme for initialization. Two
LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO
platform. The GenericIR platform implements a modified version of the previous
llvm.global-ctor scraping scheme to provide support for Windows and
Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO
specific initialization as described above.
Reviewers: sgraenitz, dblaikie
Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74300
The goal of this patch is to maximize CPU utilization on multi-socket or high core count systems, so that parallel computations such as LLD/ThinLTO can use all hardware threads in the system. Before this patch, on Windows, a maximum of 64 hardware threads could be used at most, in some cases dispatched only on one CPU socket.
== Background ==
Windows doesn't have a flat cpu_set_t like Linux. Instead, it projects hardware CPUs (or NUMA nodes) to applications through a concept of "processor groups". A "processor" is the smallest unit of execution on a CPU, that is, an hyper-thread if SMT is active; a core otherwise. There's a limit of 32-bit processors on older 32-bit versions of Windows, which later was raised to 64-processors with 64-bit versions of Windows. This limit comes from the affinity mask, which historically is represented by the sizeof(void*). Consequently, the concept of "processor groups" was introduced for dealing with systems with more than 64 hyper-threads.
By default, the Windows OS assigns only one "processor group" to each starting application, in a round-robin manner. If the application wants to use more processors, it needs to programmatically enable it, by assigning threads to other "processor groups". This also means that affinity cannot cross "processor group" boundaries; one can only specify a "preferred" group on start-up, but the application is free to allocate more groups if it wants to.
This creates a peculiar situation, where newer CPUs like the AMD EPYC 7702P (64-cores, 128-hyperthreads) are projected by the OS as two (2) "processor groups". This means that by default, an application can only use half of the cores. This situation could only get worse in the years to come, as dies with more cores will appear on the market.
== The problem ==
The heavyweight_hardware_concurrency() API was introduced so that only *one hardware thread per core* was used. Once that API returns, that original intention is lost, only the number of threads is retained. Consider a situation, on Windows, where the system has 2 CPU sockets, 18 cores each, each core having 2 hyper-threads, for a total of 72 hyper-threads. Both heavyweight_hardware_concurrency() and hardware_concurrency() currently return 36, because on Windows they are simply wrappers over std:🧵:hardware_concurrency() -- which can only return processors from the current "processor group".
== The changes in this patch ==
To solve this situation, we capture (and retain) the initial intention until the point of usage, through a new ThreadPoolStrategy class. The number of threads to use is deferred as late as possible, until the moment where the std::threads are created (ThreadPool in the case of ThinLTO).
When using hardware_concurrency(), setting ThreadCount to 0 now means to use all the possible hardware CPU (SMT) threads. Providing a ThreadCount above to the maximum number of threads will have no effect, the maximum will be used instead.
The heavyweight_hardware_concurrency() is similar to hardware_concurrency(), except that only one thread per hardware *core* will be used.
When LLVM_ENABLE_THREADS is OFF, the threading APIs will always return 1, to ensure any caller loops will be exercised at least once.
Differential Revision: https://reviews.llvm.org/D71775
ObjectLinkingLayer was not correctly propagating dependencies through local
symbols within an object. This could cause symbol lookup to return before a
searched-for symbol is ready if the following conditions are met:
(1) The definition of the symbol being searched for transitively depends on a
local symbol within the same object, and that local symbol in turn
transitively depends on an external symbol provided by some other module
in the JIT.
(2) Concurrent compilation is enabled.
(3) Thread scheduling causes the lookup of the searched-for symbol to return
before all transitive dependencies of the looked-up symbol are emitted.
This bug was found by inspection and has not been observed in practice.
A jitlink test case has been added to verify that symbol dependencies are
correctly propagated through local symbol definitions.
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Summary:
This is a follow up on https://reviews.llvm.org/D71473#inline-647262.
There's a caveat here that `Align(1)` relies on the compiler understanding of `Log2_64` implementation to produce good code. One could use `Align()` as a replacement but I believe it is less clear that the alignment is one in that case.
Reviewers: xbolva00, courbet, bollu
Subscribers: arsenm, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, jsji, Jim, kerbowa, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73099
This commit adds a ManglingOptions struct to IRMaterializationUnit, and replaces
IRCompileLayer::CompileFunction with a new IRCompileLayer::IRCompiler class. The
ManglingOptions struct defines the emulated-TLS state (via a bool member,
EmulatedTLS, which is true if emulated-TLS is enabled and false otherwise). The
IRCompileLayer::IRCompiler class wraps an IRCompiler (the same way that the
CompileFunction typedef used to), but adds a method to return the
IRCompileLayer::ManglingOptions that the compiler will use.
These changes allow us to correctly determine the symbols that will be produced
when a thread local global variable defined at the IR level is compiled with or
without emulated TLS. This is required for ORCv2, where MaterializationUnits
must declare their interface up-front.
Most ORCv2 clients should not require any changes. Clients writing custom IR
compilers will need to wrap their compiler in an IRCompileLayer::IRCompiler,
rather than an IRCompileLayer::CompileFunction, however this should be a
straightforward change (see modifications to CompileUtils.* in this patch for an
example).
The MaterializationResponsibility::defineMaterializing method allows clients to
add new definitions that are in the process of being materialized to the JIT.
This patch adds support to defineMaterializing for symbols with weak linkage
where the new definitions may be rejected if another materializer concurrently
defines the same symbol. If a weak symbol is rejected it will not be added to
the MaterializationResponsibility's responsibility set. Clients can check for
membership in the responsibility set via the
MaterializationResponsibility::getSymbols() method before resolving any
such weak symbols.
This patch also adds code to RTDyldObjectLinkingLayer to tag COFF comdat symbols
introduced during codegen as weak, on the assumption that these are COFF comdat
constants. This fixes http://llvm.org/PR40074.
Based on Don Hinton's patch in https://reviews.llvm.org/D72406. This feature
was accidentally left out of e9e26c01cd, and
would have pessimized concurrent compilation in the default case.
Thanks for spotting this Don!
This patch makes the target triple available via the LLJIT interface, and moves
the IRTransformLayer from LLLazyJIT down into LLJIT. Together these changes make
it easier to use the lazyReexports utility with LLJIT, and to apply IR
transforms to code as it is compiled in LLJIT (rather than requiring transforms
to be applied manually before code is added). An code example is added in
llvm/examples/LLJITExamples/LLJITWithLazyReexports
A bug in the existing implementation meant that lazyReexports would not work if
the aliased name differed from the alias's name, i.e. all lazy reexports had to
be of the form (lib1, name) -> (lib2, name). This patch fixes the issue by
capturing the alias's name in the NotifyResolved callback. To simplify this
capture, and the LazyCallThroughManager code in general, the NotifyResolved
callback is updated to use llvm::unique_function rather than a custom class.
No test case yet: This can only be tested at runtime, and the only in-tree
client (lli) always uses aliases with matching names. I will add a new LLJIT
example shortly that will directly test the lazyReexports API and the
non-trivial alias use case.
The argument is llvm::null() everywhere except llvm::errs() in
llvm-objdump in -DLLVM_ENABLE_ASSERTIONS=On builds. It is used by no
target but X86 in -DLLVM_ENABLE_ASSERTIONS=On builds.
If we ever have the needs to add verbose log to disassemblers, we can
record log with a member function, instead of passing it around as an
argument.
This fixes an off-by-one error in the argc value computed by runAsMain, and
switches lli back to using the input bitcode (rather than the string "lli") as
the effective program name.
Thanks to Stefan Graenitz for spotting the bug.
LLJITBuilder will now use JITLink on supported platforms even if a custom
JITTargetMachineBuilder is supplied, provided that neither the code model,
nor the relocation model, nor the ObjectLinkingLayerCreator is set.
JITLink (which underlies ObjectLinkingLayer) is a replacement for RuntimeDyld.
It supports the native code model, and linker plugins that enable a wider range
of features than RuntimeDyld.
Currently only enabled for MachO/x86-64 and MachO/arm64. New architectures will
be added as JITLink support for them is developed.
This relieves ObjectLinkingLayer clients of the responsibility of holding the
memory manager. This makes it easier to select between RTDyldObjectLinkingLayer
(which already owned its memory manager factory) and ObjectLinkingLayer at
runtime as clients aren't required to hold a jitlink::MemoryManager field just
in case ObjectLinkingLayer is selected.
This patch removes the magic "main" JITDylib from ExecutionEngine. The main
JITDylib was created automatically at ExecutionSession construction time, and
all subsequently created JITDylibs were added to the main JITDylib's
links-against list by default. This saves a couple of lines of boilerplate for
simple JIT setups, but this isn't worth introducing magical behavior for.
ORCv2 clients should now construct their own main JITDylib using
ExecutionSession::createJITDylib and set up its linkages manually using
JITDylib::setSearchOrder (or related methods in JITDylib).
The runAsMain function takes a pointer to a function with a standard C main
signature, int(*)(int, char*[]), and invokes it using the given arguments and
program name. The arguments are copied into writable temporary storage as
required by the C and C++ specifications, so runAsMain safe to use when calling
main functions that modify their arguments in-place.
This patch also uses the new runAsMain function to replace hand-rolled versions
in lli, llvm-jitlink, and the SpeculativeJIT example.
libraries.
This patch substantially updates ORCv2's lookup API in order to support weak
references, and to better support static archives. Key changes:
-- Each symbol being looked for is now associated with a SymbolLookupFlags
value. If the associated value is SymbolLookupFlags::RequiredSymbol then
the symbol must be defined in one of the JITDylibs being searched (or be
able to be generated in one of these JITDylibs via an attached definition
generator) or the lookup will fail with an error. If the associated value is
SymbolLookupFlags::WeaklyReferencedSymbol then the symbol is permitted to be
undefined, in which case it will simply not appear in the resulting
SymbolMap if the rest of the lookup succeeds.
Since lookup now requires these flags for each symbol, the lookup method now
takes an instance of a new SymbolLookupSet type rather than a SymbolNameSet.
SymbolLookupSet is a vector-backed set of (name, flags) pairs. Clients are
responsible for ensuring that the set property (i.e. unique elements) holds,
though this is usually simple and SymbolLookupSet provides convenience
methods to support this.
-- Lookups now have an associated LookupKind value, which is either
LookupKind::Static or LookupKind::DLSym. Definition generators can inspect
the lookup kind when determining whether or not to generate new definitions.
The StaticLibraryDefinitionGenerator is updated to only pull in new objects
from the archive if the lookup kind is Static. This allows lookup to be
re-used to emulate dlsym for JIT'd symbols without pulling in new objects
from archives (which would not happen in a normal dlsym call).
-- JITLink is updated to allow externals to be assigned weak linkage, and
weak externals now use the SymbolLookupFlags::WeaklyReferencedSymbol value
for lookups. Unresolved weak references will be assigned the default value of
zero.
Since this patch was modifying the lookup API anyway, it alo replaces all of the
"MatchNonExported" boolean arguments with a "JITDylibLookupFlags" enum for
readability. If a JITDylib's associated value is
JITDylibLookupFlags::MatchExportedSymbolsOnly then the lookup will only
match against exported (non-hidden) symbols in that JITDylib. If a JITDylib's
associated value is JITDylibLookupFlags::MatchAllSymbols then the lookup will
match against any symbol defined in the JITDylib.
Summary:
Most libraries are defined in the lib/ directory but there are also a
few libraries defined in tools/ e.g. libLLVM, libLTO. I'm defining
"Component Libraries" as libraries defined in lib/ that may be included in
libLLVM.so. Explicitly marking the libraries in lib/ as component
libraries allows us to remove some fragile checks that attempt to
differentiate between lib/ libraries and tools/ libraires:
1. In tools/llvm-shlib, because
llvm_map_components_to_libnames(LIB_NAMES "all") returned a list of
all libraries defined in the whole project, there was custom code
needed to filter out libraries defined in tools/, none of which should
be included in libLLVM.so. This code assumed that any library
defined as static was from lib/ and everything else should be
excluded.
With this change, llvm_map_components_to_libnames(LIB_NAMES, "all")
only returns libraries that have been added to the LLVM_COMPONENT_LIBS
global cmake property, so this custom filtering logic can be removed.
Doing this also fixes the build with BUILD_SHARED_LIBS=ON
and LLVM_BUILD_LLVM_DYLIB=ON.
2. There was some code in llvm_add_library that assumed that
libraries defined in lib/ would not have LLVM_LINK_COMPONENTS or
ARG_LINK_COMPONENTS set. This is only true because libraries
defined lib lib/ use LLVMBuild.txt and don't set these values.
This code has been fixed now to check if the library has been
explicitly marked as a component library, which should now make it
easier to remove LLVMBuild at some point in the future.
I have tested this patch on Windows, MacOS and Linux with release builds
and the following combinations of CMake options:
- "" (No options)
- -DLLVM_BUILD_LLVM_DYLIB=ON
- -DLLVM_LINK_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_BUILD_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_LINK_LLVM_DYLIB=ON
Reviewers: beanz, smeenai, compnerd, phosek
Reviewed By: beanz
Subscribers: wuzish, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, mgorny, mehdi_amini, sbc100, jgravelle-google, hiraditya, aheejin, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, steven_wu, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, dang, Jim, lenary, s.egerton, pzheng, sameer.abuasal, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70179
In a34680a33e OrcError.h and Orc/RPC/*.h were split out from the rest of
ExecutionEngine in order to eliminate false dependencies for remote JIT
targets (see https://reviews.llvm.org/D68732), however this broke modules
builds (see https://reviews.llvm.org/D69817).
This patch splits these headers out into a separate module, LLVM_OrcSupport,
in order to fix the modules build.
Fixes <rdar://56377508>.
It was failing with
PerfJITEventListener.cpp:489:7: error: 'ManagedStatic' in namespace 'llvm' does not name a template type
llvm::ManagedStatic<PerfJITEventListener> PerfListener;
It was failing with
llvm/lib/ExecutionEngine/Orc/DebugUtils.cpp:56:10:
error: could not convert ‘Obj’ from ‘std::unique_ptr<llvm::MemoryBuffer>’
to ‘llvm::Expected<std::unique_ptr<llvm::MemoryBuffer> >’
return Obj;
^
Adds a DumpObjects utility that can be used to dump JIT'd objects to disk.
Instances of DebugObjects may be used by ObjectTransformLayer as no-op
transforms.
This patch also adds an ObjectTransformLayer to LLJIT and an example of how
to use this utility to dump JIT'd objects in LLJIT.
Some targets (E.g. MachO/arm64) use relocations to fix some CFI record fields
in the eh-frame section. When relocations are used the initial (pre-relocation)
content of the eh-frame section can no longer be interpreted by following the
eh-frame specification. This causes errors in the existing eh-frame parser.
This patch moves eh-frame handling into two LinkGraph passes that are run after
relocations have been parsed (but before they are applied). The first] pass
breaks up blocks in the eh-frame section into per-CFI-record blocks, and the
second parses blocks of (potentially multiple) CFI records and adds the
appropriate edges to any CFI fields that do not have existing relocations.
These passes can be run independently of one another. By handling eh-frame
splitting/fixing with LinkGraph passes we can both re-use existing relocations
for CFI record fields and avoid applying eh-frame fixups before parsing the
section (which would complicate the linker and require extra temporary
allocations of working memory).
LinkGraph::splitBlock will split a block at a given index, returning a new
block covering the range [ 0, index ) and modifying the original block to
cover the range [ index, original-block-size ). Block addresses, content,
edges and symbols will be updated as necessary. This utility will be used
in upcoming improvements to JITLink's eh-frame support.
Summary:
When createing an ORC remote JIT target the current library split forces the target process to link large portions of LLVM (Core, Execution Engine, JITLink, Object, MC, Passes, RuntimeDyld, Support, Target, and TransformUtils). This occurs because the ORC RPC interfaces rely on the static globals the ORC Error types require, which starts a cycle of pulling in more and more.
This patch breaks the ORC RPC Error implementations out into an "OrcError" library which only depends on LLVM Support. It also pulls the ORC RPC headers into their own subdirectory.
With this patch code can include the Orc/RPC/*.h headers and will only incur link dependencies on LLVMOrcError and LLVMSupport.
Reviewers: lhames
Reviewed By: lhames
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68732
Sections may have zero size and zero-sized sections may share a start address
with other zero-sized sections. For the section overlap test to function
correctly zero-sized sections must be ordered before any non-zero sized ones.
This should fix the intermittent failures in the
test/ExecutionEngine/JITLink/X86/MachO_zero_fill_alignment.s test case that
have been observed on some builders.
It returns just a section_iterator currently and have a report_fatal_error call inside.
This change adds a way to return errors and handle them on caller sides.
The patch also changes/improves current users and adds test cases.
Differential revision: https://reviews.llvm.org/D69167
llvm-svn: 375408
Works on this dependency chain:
ArrayRef.h ->
Hashing.h -> --CUT--
Host.h ->
StringMap.h / StringRef.h
ArrayRef is very popular, but Host.h is rarely needed. Move the
IsBigEndianHost constant to SwapByteOrder.h. Clients of that header are
more likely to need it.
llvm-svn: 375316
RTDyldObjectLinkingLayer allowed clients to register a NotifyEmitted function to
reclaim ownership of object buffers once they had been linked. This patch adds
similar functionality to ObjectLinkingLayer: Clients can now optionally call the
ObjectLinkingLayer::setReturnObjectBuffer method to register a function that
will be called when discarding object buffers. If set, this function will be
called to return ownership of the object regardless of whether the link
succeeded or failed.
Use cases for this function include debug dumping (it provides a way to dump
all objects linked into JIT'd code) and object re-use (e.g. storing an
object in a cache).
llvm-svn: 374951
InProcessMemoryManager used to make separate memory allocation calls for each
permission level (RW, RX, RO), which could lead to target-out-of-range errors
if data and code were placed too far apart (this was the source of failures in
the JITLink/AArch64 testcase when it was first landed).
This patch updates InProcessMemoryManager to allocate a single slab which is
subdivided between text and data. This should guarantee that accesses remain
in-range provided that individual object files do not exceed 1Mb in size.
This patch also re-enables the JITLink/AArch64 testcase.
llvm-svn: 374948
This implementation has support for all relocation types except TLV.
Compact unwind sections are not yet supported, so exceptions/unwinding will not
work.
llvm-svn: 374476
Doing this makes MSVC complain that `empty(someRange)` could refer to
either C++17's std::empty or LLVM's llvm::empty, which previously we
avoided via SFINAE because std::empty is defined in terms of an empty
member rather than begin and end. So, switch callers over to the new
method as it is added.
https://reviews.llvm.org/D68439
llvm-svn: 373935