Just because sequences of instructions are similar to one another,
doesn't mean they are doing the same thing.
This introduces a structural check for the IRSimilarityCandidate that
compares two IRSimilarityCandidates against one another, and in each
instruction creates a mapping between the operands and results, or
checks that the existing mapping is valid. If this check passes, it
means we have structurally similar IRSimilarityCandidates.
Tests for whether the candidates are found in
unittests/Analysis/IRSimilarityIdentifierTest.cpp.
Translating between JSON objects and C++ strutctures is common.
From experience in clangd, fromJSON/ObjectMapper work well and save a lot of
code, but aren't adopted elsewhere at least partly due to total lack of error
reporting beyond "ok"/"bad".
The recently-added error model should be rich enough for most applications.
It requires tracking the path within the root object and reporting local
errors at appropriate places.
To do this, we exploit the fact that the call graph of recursive
parse functions mirror the structure of the JSON itself.
The current path is represented as a linked list of segments, each of which is
on the stack as a parameter. Concretely, fromJSON now looks like:
bool fromJSON(const Value&, T&, Path);
Beyond the signature change, this is reasonably unobtrusive: building
the path segments is mostly handled by ObjectMapper and the vector<T> fromJSON.
However the root caller of fromJSON must now create a Root object to
store the errors, which is a little clunky.
I've added high-level parse<T>(StringRef) -> Expected<T>, but it's not
general enough to be the primary interface I think (at least, not usable in
clangd).
All existing users (mostly just clangd) are updated in this patch,
making this change backwards-compatible is a bit hairy.
Differential Revision: https://reviews.llvm.org/D88103
This seems to fit the CGSCC updates model better than calling
addNewFunctionInto{Ref,}SCC() on newly created/outlined functions.
Now addNewFunctionInto{Ref,}SCC() are no longer necessary.
However, this doesn't work on newly outlined functions that aren't
referenced by the original function. e.g. if a() was outlined into b()
and c(), but c() is only referenced by b() and not by a(), this will
trigger an assert.
This also fixes an issue I was seeing with newly created functions not
having passes run on them.
Ran check-llvm with expensive checks.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D87798
The IRSimilarityCandidate is a container to hold a region of
IRInstructions and offer interfaces for the starting instruction, ending
instruction, parent function, length. It also assigns a global value
number for each unique instance of a value in the region.
It also contains an interface to compare two IRSimilarity as to whether
they have the same sequence of similar instructions.
Tests for whether the instructions are similar are found in
unittests/Analysis/IRSimilarityIdentifierTest.cpp.
Recommit of: 4944bb190f
Differential Revision: https://reviews.llvm.org/D86970
The IRSimilarityCandidate is a container to hold a region of
IRInstructions and offer interfaces for the starting instruction, ending
instruction, parent function, length. It also assigns a global value
number for each unique instance of a value in the region.
It also contains an interface to compare two IRSimilarity as to whether
they have the same sequence of similar instructions.
Tests for whether the instructions are similar are found in
unittests/Analysis/IRSimilarityIdentifierTest.cpp.
Differential Revision: https://reviews.llvm.org/D86970
Currently these predicates are ignored, yet their handling is
pretty simple. I could not find a single test where it would
actually change something, but it's only because isImpliedCondOperands
is not smart enough to prove it further on. Yet the situation when
we come there with `less` predicate is pretty common.
Differential Revision: https://reviews.llvm.org/D87890
Reviewed By: fhahn
Changes TTI function getIntImmCostInst to take an additional Instruction parameter,
which enables us to be able to check it is part of a min(max())/max(min()) pattern that will match SSAT.
We can then mark the constant used as free to prevent it being hoisted so SSAT can still be generated.
Required minor changes in some non-ARM backends to allow for the optional parameter to be included.
Differential Revision: https://reviews.llvm.org/D87457
This commit was originally because it was suspected to cause a crash,
but a reproducer did not surface.
A crash that was exposed by this change was fixed in 1d8f2e5292.
This reverts the revert commit 0581c0b0ee.
InstCombine likes to canonicalize comparisons of the form
X == C || X == C+1 into (X & -2) == C'. Make sure LVI can still
recover the value range from this. Can of course also be useful
for proper mask comparisons.
For the sake of clarity, the implementation goes through KnownBits
to compute the range.
Rewrite this in a way where the core logic is in a separate
function, that is invoked with swapped operands. This makes it
easier to add handling for additional icmp patterns.
The output here may not be optimal (yet), but it should be
consistent for commuted operands (it was not before) and
correct. We can do better by checking FMF and NaN if needed.
Code in InstSimplify generally assumes that we have already
folded code like this, so it was not handling 2 constant
inputs by commuting consistently.
The IRInstructionData structs are a different representation of the
program. This list treats the program as if it was "flattened" and
the only parent is this list. This lets us easily create ranges of
instructions.
Differential Revision: https://reviews.llvm.org/D86969
This patch extends SCEVParameterRewriter to support rewriting unknown
epxressions to arbitrary SCEV expressions. It will be used by further
patches.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D67176
This introduces the IRInstructionMapper, and the associated wrapper for
instructions, IRInstructionData, that maps IR level Instructions to
unsigned integers.
Mapping is done mainly by using the "isSameOperationAs" comparison
between two instructions. If they return true, the opcode, result type,
and operand types of the instruction are used to hash the instruction
with an unsigned integer. The mapper accepts instruction ranges, and
adds each resulting integer to a list, and each wrapped instruction to
a separate list.
At present, branches, phi nodes are not mapping and exception handling
is illegal. Debug instructions are not considered.
The different mapping schemes are tested in
unittests/Analysis/IRSimilarityIdentifierTest.cpp
Recommit of: b04c1a9d31
Differential Revision: https://reviews.llvm.org/D86968
As @efriedma pointed out in D86301, this "not equal to 0 check" of
get.active.lane.mask's second operand needs to live here in Lint and not the
Verifier.
Differential Revision: https://reviews.llvm.org/D87228
This introduces the IRInstructionMapper, and the associated wrapper for
instructions, IRInstructionData, that maps IR level Instructions to
unsigned integers.
Mapping is done mainly by using the "isSameOperationAs" comparison
between two instructions. If they return true, the opcode, result type,
and operand types of the instruction are used to hash the instruction
with an unsigned integer. The mapper accepts instruction ranges, and
adds each resulting integer to a list, and each wrapped instruction to
a separate list.
At present, branches, phi nodes are not mapping and exception handling
is illegal. Debug instructions are not considered.
The different mapping schemes are tested in
unittests/Analysis/IRSimilarityIdentifierTest.cpp
Differential Revision: https://reviews.llvm.org/D86968
Really it should be named print<alias-sets>, but for the sake of
changing fewer tests, added a TODO to rename after NPM switch and test
cleanup.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D87713
If SimplifyWithOpReplaced() cannot simplify the value, null should
be returned. Make sure this really does happen in all cases,
including those where SimplifyBinOp() returns the original value.
This does not matter for existing users, but does mattter for
D87480, which would go into an infinite loop otherwise.
When adding a new function via addNewFunctionIntoRefSCC(), it creates a
new node and immediately populates the edges. Since populateSlow() calls
G->get() on all referenced functions, it will create a node (but not
populate it) for functions that haven't yet been added. If we add two
mutually recursive functions, the assert that the node should never have
been created will fire when the second function is added. So here we
remove that assert since the node may have already been created (but not
yet populated).
createNode() is only called from addNewFunctionInto{,Ref}SCC().
https://bugs.llvm.org/show_bug.cgi?id=47502
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D87623
If the constant operand is the opposite of the min/max value,
then the result must be the other value.
This is based on the similar codegen transform proposed in:
D87571
This patch adds a isConditionImplied function that
takes a constraint and returns true if the constraint
is implied by the current constraints in the system.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D84545
This patch recommits "[ConstraintSystem] Add helpers to deal with linear constraints."
(it reverts the revert commit 8da6ae4ce1).
The reason for the revert was using __builtin_multiply_overflow, which
is not available for all compilers. The patch has been updated to use
MulOverflow from MathExtras.h
1ce82015f6 added a fix to restrict phi optimizations after phi
translations. But the current use of performedPhiTranslation only
checked whether phi translation happened for the first iterator and
missed cases where phi translations happens at subsequent
iterators/upwards defs.
This patch changes upward_defs_iteartor to take a pointer to a bool, so
we can easily ensure the final value includes all visited defs, while
still being able to conveniently use it with make_range & co.
As discussed in the sibling codegen functionality patch D87571,
this transform was created with D52766, but it is not correct.
The incorrect test diffs were missed during review, but the
'TODO' comment about this functionality was still in the code -
we need 'nnan' to enable this fold.
This allows the backend to tell the vectorizer to produce inloop
reductions through a TTI hook.
For the moment on ARM under MVE this means allowing integer add
reductions of the correct size. In the future this can include integer
min/max too, under -Os.
Differential Revision: https://reviews.llvm.org/D75512
NOTE: There is a mailing list discussion on this: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
Complemantary to the assumption outliner prototype in D71692, this patch
shows how we could simplify the code emitted for an alignemnt
assumption. The generated code is smaller, less fragile, and it makes it
easier to recognize the additional use as a "assumption use".
As mentioned in D71692 and on the mailing list, we could adopt this
scheme, and similar schemes for other patterns, without adopting the
assumption outlining.
This is a followup to D86834, which partially fixed this issue in
InstSimplify. However, InstCombine repeats the same transform while
dropping poison flags -- which does not cover cases where poison is
introduced in some other way.
The fix here is a bit more comprehensive, because things are quite
entangled, and it's hard to only partially address it without
regressing optimization. There are really two changes here:
* Export the SimplifyWithOpReplaced API from InstSimplify, with an
added AllowRefinement flag. For replacements inside the TrueVal
we don't actually care whether refinement occurs or not, the
replacement is always legal. This part of the transform is now
done in InstSimplify only. (It should be noted that the current
AllowRefinement check is not sufficient -- that's an issue we
need to address separately.)
* Change the InstCombine fold to work by temporarily dropping
poison generating flags, running the fold and then restoring the
flags if it didn't work out. This will ensure that the InstCombine
fold is correct as long as the InstSimplify fold is correct.
Differential Revision: https://reviews.llvm.org/D87445
This patch introduces a new ConstraintSystem class, that maintains a set
of linear constraints and uses Fourier–Motzkin elimination to eliminate
constraints to check if there are solutions for the system.
It also adds a convert-constraint-log-to-z3.py script, which can parse
the debug output of the constraint system and convert it to a python
script that feeds the constraints into Z3 and checks if it produces the
same result as the LLVM implementation. This is for verification
purposes.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D84544
Add DemandedBits / BDCE support for min/max intrinsics: If the low
bits are not demanded in the result, they also aren't demanded in
the operands.
Differential Revision: https://reviews.llvm.org/D87161
Bail from maskIsAllZeroOrUndef and maskIsAllOneOrUndef prior to iterating over the number of
elements for scalable vectors.
Assert that the mask type is not scalable in possiblyDemandedEltsInMask .
Assert that the types are correct in all three functions.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D87424
This implements support for isKnownNonZero, computeKnownBits when freeze is involved.
```
br (x != 0), BB1, BB2
BB1:
y = freeze x
```
In the above program, we can say that y is non-zero. The reason is as follows:
(1) If x was poison, `br (x != 0)` raised UB
(2) If x was fully undef, the branch again raised UB
(3) If x was non-zero partially undef, say `undef | 1`, `freeze x` will return a nondeterministic value which is also non-zero.
(4) If x was just a concrete value, it is trivial
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D75808
This patch adds isGuaranteedNotToBePoison and programUndefinedIfUndefOrPoison.
isGuaranteedNotToBePoison will be used at D75808. The latter function is used at isGuaranteedNotToBePoison.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D84242
If we know that the abs operand is known negative, we can replace
it with a neg.
To avoid computing known bits twice, I've removed the fold for the
non-negative case from InstSimplify. Both the non-negative and the
negative case are handled by InstCombine now, with one known bits call.
Differential Revision: https://reviews.llvm.org/D87196
log:
BB [7, 8): begin {}, end {}, livein {}, liveout {}
BB [1, 2): begin {}, end {}, livein {}, liveout {}
...
But it is not convenient to know what the basic block is.
So I add the basic block name to it.
Reviewed By: vitalybuka
TestPlan: check-llvm
Differential Revision: https://reviews.llvm.org/D87152
This addresses the remaining issue from D87188. Due to a series of
folds, we may end up with abs-of-abs represented as
x == 0 ? -abs(x) : abs(x). Rather than recognizing this as a special
abs pattern and doing an abs-of-abs fold on it afterwards,
I'm directly folding this to one of the select operands in InstSimplify.
The general pattern falls into the "select with operand replaced"
category, but that fold is not powerful enough to recognize that
both hands of the select are the same for value zero.
Differential Revision: https://reviews.llvm.org/D87197
This adjusts the description of `llvm.memcpy` to also allow operands
to be equal. This is in line with what Clang currently expects.
This change is intended to be temporary and followed by re-introduce
a variant with the non-overlapping guarantee for cases where we can
actually ensure that property in the front-end.
See the links below for more details:
http://lists.llvm.org/pipermail/cfe-dev/2020-August/066614.html
and PR11763.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D86815
Recognize umin/umax/smin/smax intrinsics and convert them to the
already existing SCEV nodes of the same name.
In the future we'll want SCEVExpander to also produce the intrinsics,
but we're not ready for that yet.
Differential Revision: https://reviews.llvm.org/D87160
If we have a dominating condition that x >= y, then umax(x, y) is x,
etc. I'm doing this in InstSimplify as the corresponding transform
for the select form is also done there.
Differential Revision: https://reviews.llvm.org/D87168
This also changes -lint from an analysis to a pass. It's similar to
-verify, and that is a normal pass, and lives in llvm/IR.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D87057
This also changes -lint from an analysis to a pass. It's similar to
-verify, and that is a normal pass, and lives in llvm/IR.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D87057
This helps SelectionDAGBuilder recognize the splat can be used as a uniform base.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D86371
This patch adds an initial, incomeplete and unsound implementation of
canReplacePointersIfEqual to check if a pointer value A can be replaced
by another pointer value B, that are deemed to be equivalent through
some means (e.g. information from conditions).
Note that is in general not sound to blindly replace pointers based on
equality, for example if they are based on different underlying objects.
LLVM's memory model is not completely settled as of now; see
https://bugs.llvm.org/show_bug.cgi?id=34548 for a more detailed
discussion.
The initial version of canReplacePointersIfEqual only rejects a very
specific case: replacing a pointer with a constant expression that is
not dereferenceable. Such a replacement is problematic and can be
restricted relatively easily without impacting most code. Using it to
limit replacements in GVN/SCCP/CVP only results in small differences in
7 programs out of MultiSource/SPEC2000/SPEC2006 on X86 with -O3 -flto.
This patch is supposed to be an initial step to improve the current
situation and the helper should be made stricter in the future. But this
will require careful analysis of the impact on performance.
Reviewed By: aqjune
Differential Revision: https://reviews.llvm.org/D85524
MemoryPhis with a single value are correct, but can lead to errors when
updating. Clean up single entry Phis newly added when cloning blocks.
Resolves PR46574.
Replace the check for poison-producing instructions in
SimplifyWithOpReplaced() with the generic helper canCreatePoison()
that properly handles poisonous shifts and thus avoids the problem
from PR47322.
This additionally fixes a bug in IIQ.UseInstrInfo=false mode, which
previously could have caused this code to ignore poison flags.
Setting UseInstrInfo=false should reduce the possible optimizations,
not increase them.
This is not a full solution to the problem, as poison could be
introduced more indirectly. This is just a minimal, easy to backport
fix.
Differential Revision: https://reviews.llvm.org/D86834
This got reverted because a dependency was reverted. It has since
been reapplied, so reapply this as well.
-----
Related to D69686. As noted there, LVI currently behaves differently
for integer and pointer values: For integers, the block value is always
valid inside the basic block, while for pointers it is only valid at
the end of the basic block. I believe the integer behavior is the
correct one, and CVP relies on it via its getConstantRange() uses.
The reason for the special pointer behavior is that LVI checks whether
a pointer is dereferenced in a given basic block and marks it as
non-null in that case. Of course, this information is valid only after
the dereferencing instruction, or in conservative approximation,
at the end of the block.
This patch changes the treatment of dereferencability: Instead of
including it inside the block value, we instead treat it as something
similar to an assume (it essentially is a non-nullness assume) and
incorporate this information in intersectAssumeOrGuardBlockValueConstantRange()
if the context instruction is the terminator of the basic block.
This happens either when determining an edge-value internally in LVI,
or when a terminator was explicitly passed to getValueAt(). The latter
case makes this more powerful than the previous implementation as
a side-effect, and this does actually seem benefitial in practice.
Of course, we do not want to recompute dereferencability on each
intersectAssume call, so we need a new cache for this. The
dereferencability analysis requires walking the entire basic block
and computing underlying objects of all memory operands. This was
previously done separately for each queried pointer value. In the
new implementation (both because this makes the caching simpler,
and because it is faster), I instead only walk the full BB once and
cache all the dereferenced pointers. So the traversal is now performed
only once per BB, instead of once per queried pointer value.
I think the overall model now makes more sense than before, and there
will be no more pitfalls due to differing integer/pointer behavior.
Differential Revision: https://reviews.llvm.org/D69914
This patch changes ElementCount so that the Min and Scalable
members are now private and can only be accessed via the get
functions getKnownMinValue() and isScalable(). In addition I've
added some other member functions for more commonly used operations.
Hopefully this makes the class more useful and will reduce the
need for calling getKnownMinValue().
Differential Revision: https://reviews.llvm.org/D86065
This patch adds support for memcmp in MemoryLocation::getForArgument.
memcmp reads from the first 2 arguments up to the number of bytes of the
third argument.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D86725
For StackLifetime after finding alloca we need to check that
values ponting to the begining of alloca.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D86692
As pointed out in post-commit review, this can legally be called
on instructions that are not inserted into basic blocks,
so don't blindly assume that there is basic block.
Apparently, we don't do this, neither in EarlyCSE, nor in InstSimplify,
nor in (old) GVN, but do in NewGVN and SimplifyCFG of all places..
While i could teach EarlyCSE how to hash PHI nodes,
we can't really do much (anything?) even if we find two identical
PHI nodes in different basic blocks, same-BB case is the interesting one,
and if we teach InstSimplify about it (which is what i wanted originally,
https://reviews.llvm.org/D86530), we get EarlyCSE support for free.
So i would think this is pretty uncontroversial.
On vanilla llvm test-suite + RawSpeed, this has the following effects:
```
| statistic name | baseline | proposed | Δ | % | \|%\| |
|----------------------------------------------------|-----------|-----------|-------:|---------:|---------:|
| instsimplify.NumPHICSE | 0 | 23779 | 23779 | 0.00% | 0.00% |
| asm-printer.EmittedInsts | 7942328 | 7942392 | 64 | 0.00% | 0.00% |
| assembler.ObjectBytes | 273069192 | 273084704 | 15512 | 0.01% | 0.01% |
| correlated-value-propagation.NumPhis | 18412 | 18539 | 127 | 0.69% | 0.69% |
| early-cse.NumCSE | 2183283 | 2183227 | -56 | 0.00% | 0.00% |
| early-cse.NumSimplify | 550105 | 542090 | -8015 | -1.46% | 1.46% |
| instcombine.NumAggregateReconstructionsSimplified | 73 | 4506 | 4433 | 6072.60% | 6072.60% |
| instcombine.NumCombined | 3640264 | 3664769 | 24505 | 0.67% | 0.67% |
| instcombine.NumDeadInst | 1778193 | 1783183 | 4990 | 0.28% | 0.28% |
| instcount.NumCallInst | 1758401 | 1758799 | 398 | 0.02% | 0.02% |
| instcount.NumInvokeInst | 59478 | 59502 | 24 | 0.04% | 0.04% |
| instcount.NumPHIInst | 330557 | 330533 | -24 | -0.01% | 0.01% |
| instcount.TotalInsts | 8831952 | 8832286 | 334 | 0.00% | 0.00% |
| simplifycfg.NumInvokes | 4300 | 4410 | 110 | 2.56% | 2.56% |
| simplifycfg.NumSimpl | 1019808 | 999607 | -20201 | -1.98% | 1.98% |
```
I.e. it fires ~24k times, causes +110 (+2.56%) more `invoke` -> `call`
transforms, and counter-intuitively results in *more* instructions total.
That being said, the PHI count doesn't decrease that much,
and looking at some examples, it seems at least some of them
were previously getting PHI CSE'd in SimplifyCFG of all places..
I'm adjusting `Instruction::isIdenticalToWhenDefined()` at the same time.
As a comment in `InstCombinerImpl::visitPHINode()` already stated,
there are no guarantees on the ordering of the operands of a PHI node,
so if we just naively compare them, we may false-negatively say that
the nodes are not equal when the only difference is operand order,
which is especially important since the fold is in InstSimplify,
so we can't rely on InstCombine sorting them beforehand.
Fixing this for the general case is costly (geomean +0.02%),
and does not appear to catch anything in test-suite, but for
the same-BB case, it's trivial, so let's fix at least that.
As per http://llvm-compile-time-tracker.com/compare.php?from=04879086b44348cad600a0a1ccbe1f7776cc3cf9&to=82bdedb888b945df1e9f130dd3ac4dd3c96e2925&stat=instructions
this appears to cause geomean +0.03% compile time increase (regression),
but geomean -0.01%..-0.04% code size decrease (improvement).
This is a reboot of D84655, now performing the inner icmp
simplification query without undef folds.
It should be possible to handle the current foldMinMaxSharedOp()
fold based on this, by moving the logic into icmp of min/max instead,
making it more general. We can't drop the folds for constant operands,
because those also allow undef, which we exclude here.
The tests use assumes for exhaustive coverage, and have a few
more examples of misc folds we get based on icmp simplification.
Differential Revision: https://reviews.llvm.org/D85929
InstSimplify should do all transformations that ConstProp does, but
one thing that ConstProp does that InstSimplify wouldn't is inline
vector instructions that are constants, e.g. into a ret.
Previously vector instructions wouldn't be inlined in InstSimplify
because llvm::Simplify*Instruction() would return nullptr for specific
instructions, such as vector instructions that were actually constants,
if it couldn't simplify them.
This changes SimplifyInsertElementInst, SimplifyExtractElementInst, and
SimplifyShuffleVectorInst to return a vector constant when possible.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D85946
This patch adds NoUndef to Intrinsics.td.
The attribute is attached to llvm.assume's operand, because llvm.assume(undef)
is UB.
It is attached to pointer operands of several memory accessing intrinsics
as well.
This change makes ValueTracking::getGuaranteedNonPoisonOps' intrinsic check
unnecessary, so it is removed.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86576
We only need the C++ type and the corresponding TF Enum. The other
parameter was used for the output spec json file, but we can just
standardize on the C++ type name there.
Differential Revision: https://reviews.llvm.org/D86549
This patch helps getGuaranteedNonPoisonOp find multiple non-poison operands.
Instead of special-casing llvm.assume, I think it is also a viable option to
add noundef to Intrinsics.td. If it makes sense, I'll make a patch for that.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86477
We're not changing IR while running a single MemDep query, so it's
safe to cache alias analysis results using BatchAA. This adds BatchAA
usage to getSimplePointerDependencyFrom(), which is non-intrusive --
covering larger parts (like a whole processNonLocalLoad query) is
also possible, but requires threading BatchAA through a bunch of APIs.
For the ThinLTO configuration, this is a 1% geomean improvement on CTMark.
Differential Revision: https://reviews.llvm.org/D85583
Summary: The LCSSA pass (required for all loop passes) sometimes adds
additional blocks containing LCSSA variables, and checkLoopsStructure
may return false even when the loops are perfectly nested in this case.
This is because the successor of the exit block of the inner loop now
points to the LCSSA block instead of the latch block of the outer loop.
Examples are shown in the test nests-with-lcssa.ll.
To fix the issue, the successor of the exit block of the inner loop can
now point to a block in which all instructions are LCSSA phi node
(except the terminator), and the sole successor of that block should
point to the latch block of the outer loop.
Reviewed By: Whitney, etiotto
Differential Revision: https://reviews.llvm.org/D86133
If we use training algorithms that don't need partial rewards, we don't
need to worry about an ir2native model. In that case, training logs
won't contain a 'delta_size' feature either (since that's the partial
reward).
Differential Revision: https://reviews.llvm.org/D86481
Extend the `applyUpdates` in DominatorTree to allow a post CFG view,
different from the current CFG.
This patch implements the functionality of updating an already up to
date DT, to the desired PostCFGView.
Combining a set of updates towards an up to date DT and a PostCFGView is
not yet supported.
Differential Revision: https://reviews.llvm.org/D85472
The legacy PM alias analysis pipeline by default includes basic-aa.
When running `opt -foo-pass` under the NPM and -disable-basic-aa is not
specified, use basic-aa.
This decreases the number of check-llvm failures under NPM from 913 to 752.
Reviewed By: ychen, asbirlea
Differential Revision: https://reviews.llvm.org/D86167
Both AfterPass and AfterPassInvalidated pass instrumentation
callbacks get additional parameter of type PreservedAnalyses.
This patch was created by @fedor.sergeev. I have just slightly
changed it.
Reviewers: fedor.sergeev
Differential Revision: https://reviews.llvm.org/D81555
As part of D84741, this adds a target hook for the
preferPredicatedReductionSelect option and makes use
of it under MVE, allowing us to tail predicate most
reduction loops.
Differential Revision: https://reviews.llvm.org/D85980
There's a potential motivating case to increase this limit in PR47191:
http://bugs.llvm.org/PR47191
But first we should make it less hacky. The limit in InstCombine is directly tied
to this value because an increase there can cause asserts in the underlying value
tracking calls if not changed together. The usage in VectorUtils is independent,
but the comment suggests that we should use the same value unless there's a known
reason to diverge. There are similar limits in codegen analysis, but I think we
should leave those independent in case we intentionally want the optimization
power/cost to be different there.
Differential Revision: https://reviews.llvm.org/D86113
Different training algorithms may produce models that, besides the main
policy output (i.e. inline/don't inline), produce additional outputs
that are necessary for the next training stage. To facilitate this, in
development mode, we require the training policy infrastructure produce
a description of the outputs that are interesting to it, in the form of
a JSON file. We special-case the first entry in the JSON file as the
inlining decision - we care about its value, so we can guide inlining
during training - but treat the rest as opaque data that we just copy
over to the training log.
Differential Revision: https://reviews.llvm.org/D85674
this bug was causing miscompile.
now clang cant properly selfhost with -mllvm --enable-knowledge-retention
Reviewed By: jdoerfert, lebedev.ri
Differential Revision: https://reviews.llvm.org/D83507
The current demand propagator for addition will mark all input bits at and right of the alive output bit as alive. But carry won't propagate beyond a bit for which both operands are zero (or one/zero in the case of subtraction) so a more accurate answer is possible given known bits.
I derived a propagator by working through truth tables and using a bit-reversed addition to make demand ripple to the right, but I'm not sure how to make a convincing argument for its correctness in the comments yet. Nevertheless, here's a minimal implementation and test to get feedback.
This would help in a situation where, for example, four bytes (<128) packed into an int are added with four others SIMD-style but only one of the four results is actually read.
Known A: 0_______0_______0_______0_______
Known B: 0_______0_______0_______0_______
AOut: 00000000001000000000000000000000
AB, current: 00000000001111111111111111111111
AB, patch: 00000000001111111000000000000000
Committed on behalf of: @rrika (Erika)
Differential Revision: https://reviews.llvm.org/D72423
If we can't identify alloca used in lifetime marker we
need to assume to worst case scenario.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D84630
This change added a new inline advisor that takes optimization remarks from previous inlining as input, and provides the decision as advice so current inlining can replay inline decisions of a different compilation. Dwarf inline stack with line and discriminator is used as anchor for call sites including call context. The change can be useful for Inliner tuning as it provides a channel to allow external input for tweaking inline decisions. Existing alternatives like alwaysinline attribute is per-function, not per-callsite. Per-callsite inline intrinsic can be another solution (not yet existing), but it's intrusive to implement and also does not differentiate call context.
A switch -sample-profile-inline-replay=<inline_remarks_file> is added to hook up the new inline advisor with SampleProfileLoader's inline decision for replay. Since SampleProfileLoader does top-down inlining, inline decision can be specialized for each call context, hence we should be able to replay inlining accurately. However with a bottom-up inliner like CGSCC inlining, the replay can be limited due to lack of specialization for different call context. Apart from that limitation, the new inline advisor can still be used by regular CGSCC inliner later if needed for tuning purpose.
This is a resubmit of https://reviews.llvm.org/D83743
This avoid GUID lookup in Index.findSummaryInModule.
Follow up for D81242.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D85269
Similarly as for pointers, even for integers a == b is usually false.
GCC also uses this heuristic.
Reviewed By: ebrevnov
Differential Revision: https://reviews.llvm.org/D85781
Similarly as for pointers, even for integers a == b is usually false.
GCC also uses this heuristic.
Reviewed By: ebrevnov
Differential Revision: https://reviews.llvm.org/D85781
Similarly as for pointers, even for integers a == b is usually false.
GCC also uses this heuristic.
Reviewed By: ebrevnov
Differential Revision: https://reviews.llvm.org/D85781
This reverts commit e441b7a7a0.
This patch causes a compile error in tensorflow opensource project. The stack trace looks like:
Point of crash:
llvm/include/llvm/Analysis/LoopInfoImpl.h : line 35
(gdb) ptype *this
type = const class llvm::LoopBase<llvm::BasicBlock, llvm::Loop> [with BlockT = llvm::BasicBlock, LoopT = llvm::Loop]
(gdb) p *this
$1 = {ParentLoop = 0x0, SubLoops = std::vector of length 0, capacity 0, Blocks = std::vector of length 0, capacity 1,
DenseBlockSet = {<llvm::SmallPtrSetImpl<llvm::BasicBlock const*>> = {<llvm::SmallPtrSetImplBase> = {<llvm::DebugEpochBase> = {Epoch = 3}, SmallArray = 0x1b2bf6c8, CurArray = 0x1b2bf6c8,
CurArraySize = 8, NumNonEmpty = 0, NumTombstones = 0}, <No data fields>}, SmallStorage = {0xfffffffffffffffe, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}}, IsInvalid = true}
(gdb) p *this->DenseBlockSet->CurArray
$2 = (const void *) 0xfffffffffffffffe
I will try to get a case from tensorflow or use creduce to get a small case.
This recommits the following patches now that D85684 has landed
1cf6f210a2 [IR] Disable select ? C : undef -> C fold in ConstantFoldSelectInstruction unless we know C isn't poison.
469da663f2 [InstSimplify] Re-enable select ?, undef, X -> X transform when X is provably not poison
122b0640fc [InstSimplify] Don't fold vectors of partial undef in SimplifySelectInst if the non-undef element value might produce poison
ac0af12ed2 [InstSimplify] Add test cases for opportunities to fold select ?, X, undef -> X when we can prove X isn't poison
9b1e95329a [InstSimplify] Remove select ?, undef, X -> X and select ?, X, undef -> X transforms
Now that SCEVExpander can preserve LCSSA form,
we do not have to worry about LCSSA form when
trying to look through PHIs. SCEVExpander will take
care of inserting LCSSA PHI nodes as required.
This increases precision of the analysis in some cases.
Reviewed By: mkazantsev, bmahjour
Differential Revision: https://reviews.llvm.org/D71539
Similar to what we do in IIQ, add an isUndefValue() helper that
checks for undef values while respective CanUseUndef. This makes
it much easier to search for places that don't respect the flag
yet.
This is the replacement for D84250 based on D84792. As we recursively
fold with the same value twice, we need to disable undef folds,
to prevent an undef from being folded to two different values.
Reverting rG00f3579aea6e3d4a4b7464c3db47294f71cef9e4 and using the
test case from https://reviews.llvm.org/D83360#2145793, it no longer
performs the incorrect fold.
Differential Revision: https://reviews.llvm.org/D85684
I think this is the last remaining translation of an existing
instcombine transform for the corresponding cmp+sel idiom.
This interpretation is more general though - we can remove
mismatched signed/unsigned combinations in addition to the
more obvious cases.
min/max(X, Y) must produce X or Y as the result, so this is
just another clause in the existing transform that was already
matching a min/max of min/max.
This is the max version of D85046.
This change causes binary changes in 44 out of 237 benchmarks (out of
MultiSource/SPEC2000/SPEC2006)
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D85189
This patch makes getEdgeValueLocal more precise when a freeze instruction is
given, by adding support for freeze into constantFoldUser
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D84629
Constant fold both the trapping and saturating versions of the
WebAssembly truncation intrinsics. The tests are adapted from the
WebAssembly spec tests for the corresponding instructions.
Requested in PR46982.
Differential Revision: https://reviews.llvm.org/D85392
This allows us to subsequently configure the logger for the case when we
use a model evaluator and want to log additional outputs.
Differential Revision: https://reviews.llvm.org/D85577
Making use of undef is not safe if the simplification result is not used
to replace all uses of the result. This leads to problems in NewGVN,
which does not replace all uses in the IR directly. See PR33165 for more
details.
This patch adds an option to SimplifyQuery to disable the use of undef.
Note that I've only guarded uses if isa<UndefValue>/m_Undef where
SimplifyQuery is currently available. If we agree on the general
direction, I'll update the remaining uses.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D84792
If we can't identify alloca used in lifetime marker we
need to assume to worst case scenario.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D84630
addGlobalValueSummary can check newly added FunctionSummary
and set HasParamAccess to mark that generateParamAccessSummary
is needed.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D85182
In GlobalISel, if you have a load into a small type with a range, you'll hit
an assert if you try to compute known bits on it starting at a larger type.
e.g.
```
%x:_(s8) = G_LOAD %whatever(p0) :: (load 1 ... !range !n)
...
%y:_(s32) = G_SOMETHING %x
```
When we walk through G_SOMETHING and hit the load, the width of our known bits
is 32. However, the width of the range is going to be 8. This will cause us
to hit an assert.
To fix this, make computeKnownBitsFromRangeMetadata zero extend or truncate
the range type to match the bitwidth of the known bits we're calculating.
Add a testcase in CodeGen/GlobalISel/KnownBitsTest.cpp to reflect that this
works now.
https://reviews.llvm.org/D85375
We don't want mandatory events in the training log. We do want to handle
them, to keep the native size accounting accurate, but that's all.
Fixed the code, also expanded the test to capture this.
Differential Revision: https://reviews.llvm.org/D85373
Arm MVE has multiple instructions such as VMLAVA.s8, which (in this
case) can take two 128bit vectors, sign extend the inputs to i32,
multiplying them together and sum the result into a 32bit general
purpose register. So taking 16 i8's as inputs, they can multiply and
accumulate the result into a single i32 without any rounding/truncating
along the way. There are also reduction instructions for plain integer
add and min/max, and operations that sum into a pair of 32bit registers
together treated as a 64bit integer (even though MVE does not have a
plain 64bit addition instruction). So giving the vectorizer the ability
to use these instructions both enables us to vectorize at higher
bitwidths, and to vectorize things we previously could not.
In order to do that we need a way to represent that the reduction
operation, specified with a llvm.experimental.vector.reduce when
vectorizing for Arm, occurs inside the loop not after it like most
reductions. This patch attempts to do that, teaching the vectorizer
about in-loop reductions. It does this through a vplan recipe
representing the reductions that the original chain of reduction
operations is replaced by. Cost modelling is currently just done through
a prefersInloopReduction TTI hook (which follows in a later patch).
Differential Revision: https://reviews.llvm.org/D75069
https://rise4fun.com/Alive/pZEr
Name: mul nuw with icmp eq
Pre: (C2 %u C1) != 0
%a = mul nuw i8 %x, C1
%r = icmp eq i8 %a, C2
=>
%r = false
Name: mul nuw with icmp ne
Pre: (C2 %u C1) != 0
%a = mul nuw i8 %x, C1
%r = icmp ne i8 %a, C2
=>
%r = true
There are potentially several other transforms we need to add based on:
D51625
...but it doesn't look like there was follow-up to that patch.
This reverts commit e9761688e4. It breaks the build:
```
~/src/llvm-project/llvm/lib/Analysis/IVDescriptors.cpp:868:10: error: no viable conversion from returned value of type 'SmallVector<[...], 8>' to function return type 'SmallVector<[...], 4>'
return ReductionOperations;
```
These were implementation detail, but become necessary for generic data
copying.
Also added const variations to them, and move assignment, since we had a
move ctor (and the move assignment helps in a subsequent patch).
Differential Revision: https://reviews.llvm.org/D85262
Arm MVE has multiple instructions such as VMLAVA.s8, which (in this
case) can take two 128bit vectors, sign extend the inputs to i32,
multiplying them together and sum the result into a 32bit general
purpose register. So taking 16 i8's as inputs, they can multiply and
accumulate the result into a single i32 without any rounding/truncating
along the way. There are also reduction instructions for plain integer
add and min/max, and operations that sum into a pair of 32bit registers
together treated as a 64bit integer (even though MVE does not have a
plain 64bit addition instruction). So giving the vectorizer the ability
to use these instructions both enables us to vectorize at higher
bitwidths, and to vectorize things we previously could not.
In order to do that we need a way to represent that the reduction
operation, specified with a llvm.experimental.vector.reduce when
vectorizing for Arm, occurs inside the loop not after it like most
reductions. This patch attempts to do that, teaching the vectorizer
about in-loop reductions. It does this through a vplan recipe
representing the reductions that the original chain of reduction
operations is replaced by. Cost modelling is currently just done through
a prefersInloopReduction TTI hook (which follows in a later patch).
Differential Revision: https://reviews.llvm.org/D75069
This is one more NFC part extracted from D79485. Normal and SCC based loops have very different representation and have to be handled separatly each time we deal with loops. D79485 is going to introduce much more extensive use of loops what will be problematic with out this change.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D84838
Added a mechanism to check the element type, get the total element
count, and the size of an element.
Differential Revision: https://reviews.llvm.org/D85250
This revision adds the following peephole optimization
and it's negation:
%a = urem i64 %x, %y
%b = icmp ule i64 %a, %x
====>
%b = true
With John Regehr's help this optimization was checked with Alive2
which suggests it should be valid.
This pattern occurs in the bound checks of Rust code, the program
const N: usize = 3;
const T = u8;
pub fn split_mutiple(slice: &[T]) -> (&[T], &[T]) {
let len = slice.len() / N;
slice.split_at(len * N)
}
the method call slice.split_at will check that len * N is within
the bounds of slice, this bounds check is after some transformations
turned into the urem seen above and then LLVM fails to optimize it
any further. Adding this optimization would cause this bounds check
to be fully optimized away.
ref: https://github.com/rust-lang/rust/issues/74938
Differential Revision: https://reviews.llvm.org/D85092
This is based on the existing code for the non-intrinsic idioms
in InstCombine.
The vector constant constraint is non-obvious: undefs should be
ok in the outer call, but they can't propagate safely from the
inner call in all cases. Example:
https://alive2.llvm.org/ce/z/-2bVbM
define <2 x i8> @src(<2 x i8> %x) {
%0:
%m = umin <2 x i8> %x, { 7, undef }
%m2 = umin <2 x i8> { 9, 9 }, %m
ret <2 x i8> %m2
}
=>
define <2 x i8> @tgt(<2 x i8> %x) {
%0:
%m = umin <2 x i8> %x, { 7, undef }
ret <2 x i8> %m
}
Transformation doesn't verify!
ERROR: Value mismatch
Example:
<2 x i8> %x = < undef, undef >
Source:
<2 x i8> %m = < #x00 (0) [based on undef value], #x00 (0) >
<2 x i8> %m2 = < #x00 (0), #x00 (0) >
Target:
<2 x i8> %m = < #x07 (7), #x10 (16) >
Source value: < #x00 (0), #x00 (0) >
Target value: < #x07 (7), #x10 (16) >
This option was added a while back, to help improve AA around pointer
phi loops. It looks for phi(gep(phi, const), x) loops, checking if x can
then prove more precise aliasing info.
Differential Revision: https://reviews.llvm.org/D82998
Merging alias results from different paths, when a path did phi
translation is not necesarily correct. Conservatively terminate such paths.
Aimed to fix PR46156.
Differential Revision: https://reviews.llvm.org/D84905
A JSON->TensorSpec utility we will use subsequently to specify
additional outputs needed for certain training scenarios.
Differential Revision: https://reviews.llvm.org/D84976
In some cases, it seems like we can get rid of unnecessary s/umins by
using information from the loop guards (unless I am missing something).
One place where this seems to be helpful in practice is when computing
loop trip counts. This patch just changes howManyGreaterThans for now.
Note that this requires a loop for which we can check 'is guarded'.
On SPEC2000/SPEC2006/MultiSource, there are some notable changes for
some programs in the number of loops unrolled and trip counts computed.
```
Same hash: 179 (filtered out)
Remaining: 58
Metric: scalar-evolution.NumTripCountsComputed
Program base patch diff
test-suite...langs-C/compiler/compiler.test 25.00 31.00 24.0%
test-suite.../Applications/SPASS/SPASS.test 2020.00 2323.00 15.0%
test-suite...langs-C/allroots/allroots.test 29.00 32.00 10.3%
test-suite.../Prolangs-C/loader/loader.test 17.00 18.00 5.9%
test-suite...fice-ispell/office-ispell.test 253.00 265.00 4.7%
test-suite...006/450.soplex/450.soplex.test 3552.00 3692.00 3.9%
test-suite...chmarks/MallocBench/gs/gs.test 453.00 470.00 3.8%
test-suite...ngs-C/assembler/assembler.test 29.00 30.00 3.4%
test-suite.../Benchmarks/Ptrdist/bc/bc.test 263.00 270.00 2.7%
test-suite...rks/FreeBench/pifft/pifft.test 722.00 741.00 2.6%
test-suite...count/automotive-bitcount.test 41.00 42.00 2.4%
test-suite...0/253.perlbmk/253.perlbmk.test 1417.00 1451.00 2.4%
test-suite...000/197.parser/197.parser.test 387.00 396.00 2.3%
test-suite...lications/sqlite3/sqlite3.test 1168.00 1189.00 1.8%
test-suite...000/255.vortex/255.vortex.test 173.00 176.00 1.7%
Metric: loop-unroll.NumUnrolled
Program base patch diff
test-suite...langs-C/compiler/compiler.test 1.00 3.00 200.0%
test-suite.../Applications/SPASS/SPASS.test 134.00 234.00 74.6%
test-suite...count/automotive-bitcount.test 3.00 4.00 33.3%
test-suite.../Prolangs-C/loader/loader.test 3.00 4.00 33.3%
test-suite...langs-C/allroots/allroots.test 3.00 4.00 33.3%
test-suite...Source/Benchmarks/sim/sim.test 10.00 12.00 20.0%
test-suite...fice-ispell/office-ispell.test 21.00 25.00 19.0%
test-suite.../Benchmarks/Ptrdist/bc/bc.test 32.00 38.00 18.8%
test-suite...006/450.soplex/450.soplex.test 300.00 352.00 17.3%
test-suite...rks/FreeBench/pifft/pifft.test 60.00 69.00 15.0%
test-suite...chmarks/MallocBench/gs/gs.test 57.00 63.00 10.5%
test-suite...ngs-C/assembler/assembler.test 10.00 11.00 10.0%
test-suite...0/253.perlbmk/253.perlbmk.test 145.00 157.00 8.3%
test-suite...000/197.parser/197.parser.test 43.00 46.00 7.0%
test-suite...TimberWolfMC/timberwolfmc.test 205.00 214.00 4.4%
Geomean difference 7.6%
```
Fixes https://bugs.llvm.org/show_bug.cgi?id=46939
Fixes https://bugs.llvm.org/show_bug.cgi?id=46924 on X86.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D85046
It's always safe to pick the earlier abs regardless of the nsw flag. We'll just lose it if it is on the outer abs but not the inner abs.
Differential Revision: https://reviews.llvm.org/D85053
abs() should be rare enough that using value tracking is not going
to be a compile-time cost burden, so use it to reduce a variety of
potential patterns. We do this in DAGCombiner too.
Differential Revision: https://reviews.llvm.org/D85043
Add the optimizations we have in the SelectionDAG version.
Known non-negative copies all known bits. Any known one other than
the sign bit makes result non-negative.
Differential Revision: https://reviews.llvm.org/D85000
If absolute value needs turn a negative number into a positive number it reduces the number of sign bits by at most 1.
Differential Revision: https://reviews.llvm.org/D84971
findAllocaForValue uses AllocaForValue to cache resolved values.
The function is used only to resolve arguments of lifetime
intrinsic which usually are not fare for allocas. So result reuse
is likely unnoticeable.
In followup patches I'd like to replace the function with
GetUnderlyingObjects.
Depends on D84616.
Differential Revision: https://reviews.llvm.org/D84617
This includes basic support for computeKnownBits on abs. I've left FIXMEs for more complicated things we could do.
Differential Revision: https://reviews.llvm.org/D84963
Currently we skip alias sets with only reads or a single write and no
reads, but still add the pointers to the list of pointers in RtCheck.
This can lead to cases where we try to access a pointer that does not
exist when grouping checks. In most cases, the way we access
PositionMap masked that, as the value would default to index 0.
But in the example in PR46854 it causes a crash.
This patch updates the logic to avoid adding pointers for alias sets
that do not need any checks. It makes things slightly more verbose, by
first checking the numbers of reads/writes and bailing out early if we don't
need checks for the alias set.
I think this makes the logic a bit simpler to follow.
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D84608
Problem:
Right now, our "Running pass" is not accurate when passes are wrapped in adaptor because adaptor is never skipped and a pass could be skipped. The other problem is that "Running pass" for a adaptor is before any "Running pass" of passes/analyses it depends on. (for example, FunctionToLoopPassAdaptor). So the order of printing is not the actual order.
Solution:
Doing things like PassManager::Debuglogging is very intrusive because we need to specify Debuglogging whenever adaptor is created. (Actually, right now we're not specifying Debuglogging for some sub-PassManagers. Check PassBuilder)
This patch move debug logging for pass as a PassInstrument callback. We could be sure that all running passes are logged and in the correct order.
This could also be used to implement hierarchy pass logging in legacy PM. We could also move logging of pass manager to this if we want.
The test fixes looks messy. It includes changes:
- Remove PassInstrumentationAnalysis
- Remove PassAdaptor
- If a PassAdaptor is for a real pass, the pass is added
- Pass reorder (to the correct order), related to PassAdaptor
- Add missing passes (due to Debuglogging not passed down)
Reviewed By: asbirlea, aeubanks
Differential Revision: https://reviews.llvm.org/D84774
Further abstracting the specification of a tensor, to more easily
support different types and shapes of tensor, and also to perform
initialization up-front, at TFModelEvaluator construction time.
Differential Revision: https://reviews.llvm.org/D84685
This adds a common API for compute constant ranges of intrinsics.
The intention here is that
a) we can reuse the same code across different passes that handle
constant ranges, i.e. this can be reused in SCCP
b) we only have to add knowledge about supported intrinsics to
ConstantRange, not any consumers.
Differential Revision: https://reviews.llvm.org/D84587
This matches the behavior of simplify calls for regular opcodes -
rely on ConstantFolding before spending time on folds with variables.
I am not aware of any diffs from this re-ordering currently, but there was
potential for unintended behavior from the min/max intrinsics because that
code is implicitly assuming that only 1 of the input operands is constant.
Currently, getCastInstrCost has limited information about the cast it's
rating, often just the opcode and types. Sometimes there is a context
instruction as well, but it isn't trustworthy: for instance, when the
vectorizer is rating a plan, it calls getCastInstrCost with the old
instructions when, in fact, it's trying to evaluate the cost of the
instruction post-vectorization. Thus, the current system can get the
cost of certain casts incorrect as the correct cost can vary greatly
based on the context in which it's used.
For example, if the vectorizer queries getCastInstrCost to evaluate the
cost of a sext(load) with tail predication enabled, getCastInstrCost
will think it's free most of the time, but it's not always free. On ARM
MVE, a VLD2 group cannot be extended like a normal VLDR can. Similar
situations can come up with how masked loads can be extended when being
split.
To fix that, this path adds a new parameter to getCastInstrCost to give
it a hint about the context of the cast. It adds a CastContextHint enum
which contains the type of the load/store being created by the
vectorizer - one for each of the types it can produce.
Original patch by Pierre van Houtryve
Differential Revision: https://reviews.llvm.org/D79162
This is the main icmp simplification shortcoming seen in D84655.
Alive2 agrees that the basic examples are correct at least:
define <2 x i1> @src(<2 x i8> %x) {
%0:
%r = icmp sle <2 x i8> { undef, 128 }, %x
ret <2 x i1> %r
}
=>
define <2 x i1> @tgt(<2 x i8> %x) {
%0:
ret <2 x i1> { 1, 1 }
}
Transformation seems to be correct!
define <2 x i1> @src(<2 x i32> %X) {
%0:
%A = or <2 x i32> %X, { 63, 63 }
%B = icmp ult <2 x i32> %A, { undef, 50 }
ret <2 x i1> %B
}
=>
define <2 x i1> @tgt(<2 x i32> %X) {
%0:
ret <2 x i1> { 0, 0 }
}
Transformation seems to be correct!
https://alive2.llvm.org/ce/z/omt2eehttps://alive2.llvm.org/ce/z/GW4nP_
Differential Revision: https://reviews.llvm.org/D84762
There is a silly mistake where release() is used instead of reset() for free resources of unique pointer.
Reviewed By: ebrevnov
Differential Revision: https://reviews.llvm.org/D84747
In order to facilitate review of D79485 here is a small NFC change which restructures code around handling of SCCs in BPI.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D84514
Summary:
Use getChildren() method in GraphDiff instead of GraphTraits.
This simplifies the code and allows for refactorigns inside GraphDiff.
All usecase need not have a light-weight/copyable range.
Clean GraphTraits implementation.
Reviewers: dblaikie
Subscribers: hiraditya, llvm-commits, george.burgess.iv
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D84562
Summary:
Try not to resize vector of call records in a call graph node when
replacing call edge. That would prevent invalidation of iterators
stored in the CG SCC pass manager's scc_iterator.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D84295
This is a simple patch that adds constant folding for freeze
instruction.
IIUC, it isn't needed to update ConstantFold.cpp because there is no freeze
constexpr.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D84597
This is a simple patch that makes canCreateUndefOrPoison use
Instruction::isBinaryOp because BinaryOperator inherits Instruction.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D84596
This is the first of two patches to address PR46753. We basically allow
mem2reg to promote allocas that are used in doppable instructions, for
now that means `llvm.assume`. The uses of the alloca (or a bitcast or
zero offset GEP from there) are replaced by `undef` in the droppable
instructions.
Reviewed By: Tyker
Differential Revision: https://reviews.llvm.org/D83976
Summary: To match NewPM name. Also the new name is clearer and more consistent.
Subscribers: jvesely, nhaehnle, hiraditya, asbirlea, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D84542
Make sure we do not call
constainsConstantExpression/containsUndefElement on ConstantExpression,
which is not supported.
In particular, containsUndefElement/constainsConstantExpression are only
supported on constants which are supported by getAggregateElement.
Unfortunately there's no convenient way to check if a constant supports
getAggregateElement, so just check for non-constantexpressions with
vector type. Other users of those functions do so too.
Reviewers: spatel, nikic, craig.topper, lebedev.ri, jdoerfert, aqjune
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D84512
PassManager.h is one of the top headers in the ClangBuildAnalyzer frontend worst offenders list.
This exposes a large number of implicit dependencies on various forward declarations/includes in other headers that need addressing.
(This reverts commit a5e0194709, and
corrects author).
Rename the pass to be able to extend it to function properties other than inliner features.
Reviewed By: mtrofin
Differential Revision: https://reviews.llvm.org/D82044
Rename the pass to be able to extend it to function properties other than inliner features.
Reviewed By: mtrofin
Differential Revision: https://reviews.llvm.org/D82044
For a long time, the InstCombine pass handled target specific
intrinsics. Having target specific code in general passes was noted as
an area for improvement for a long time.
D81728 moves most target specific code out of the InstCombine pass.
Applying the target specific combinations in an extra pass would
probably result in inferior optimizations compared to the current
fixed-point iteration, therefore the InstCombine pass resorts to newly
introduced functions in the TargetTransformInfo when it encounters
unknown intrinsics.
The patch should not have any effect on generated code (under the
assumption that code never uses intrinsics from a foreign target).
This introduces three new functions:
TargetTransformInfo::instCombineIntrinsic
TargetTransformInfo::simplifyDemandedUseBitsIntrinsic
TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic
A few target specific parts are left in the InstCombine folder, where
it makes sense to share code. The largest left-over part in
InstCombineCalls.cpp is the code shared between arm and aarch64.
This allows to move about 3000 lines out from InstCombine to the targets.
Differential Revision: https://reviews.llvm.org/D81728
This assert was added to verify assumption that GEP's SCEV will be of pointer type,
basing on fact that it should be a SCEVAddExpr with (at least) last operand being
pointer. Two notes:
- GEP's SCEV does not have to be a SCEVAddExpr after all simplifications;
- In current state, GEP's SCEV does not have to have at least one pointer operands
(all of them can become int during the transforms).
However, we might want to be at a point where it is true. We are currently removing
this assert and will try to enumerate the cases where "is pointer" notion might be
lost during the transforms. When all of them are fixed, we can return it.
Differential Revision: https://reviews.llvm.org/D84294
Reviewed By: lebedev.ri
.. in isGuaranteedNotToBeUndefOrPoison.
This caused early exit of isGuaranteedNotToBeUndefOrPoison, making it return
imprecise result.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D84251
Outside of compiler-rt (where it's arguably an anti-pattern too),
LLVM tries to keep its build files as simple as possible. See e.g.
llvm/docs/SupportLibrary.rst, "Code Organization".
Differential Revision: https://reviews.llvm.org/D84243
We can sometimes get into the situation where the operand to a vctp
intrinsic becomes constant, such as after a loop is fully unrolled. This
adds the constant folding needed for them, allowing them to simplify
away and hopefully simplifying remaining instructions.
Differential Revision: https://reviews.llvm.org/D84110
Summary:
This is the InlineAdvisor used in 'development' mode. It enables two
scenarios:
- loading models via a command-line parameter, thus allowing for rapid
training iteration, where models can be used for the next exploration
phase without requiring recompiling the compiler. This trades off some
compilation speed for the added flexibility.
- collecting training logs, in the form of tensorflow.SequenceExample
protobufs. We generate these as textual protobufs, which simplifies
generation and testing. The protobufs may then be readily consumed by a
tensorflow-based training algorithm.
To speed up training, training logs may also be collected from the
'default' training policy. In that case, this InlineAdvisor does not
use a model.
RFC: http://lists.llvm.org/pipermail/llvm-dev/2020-April/140763.html
Reviewers: jdoerfert, davidxl
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83733
This allows tracking the in-memory type of a pointer argument to a
function for ABI purposes. This is essentially a stripped down version
of byval to remove some of the stack-copy implications in its
definition.
This includes the base IR changes, and some tests for places where it
should be treated similarly to byval. Codegen support will be in a
future patch.
My original attempt at solving some of these problems was to repurpose
byval with a different address space from the stack. However, it is
technically permitted for the callee to introduce a write to the
argument, although nothing does this in reality. There is also talk of
removing and replacing the byval attribute, so a new attribute would
need to take its place anyway.
This is intended avoid some optimization issues with the current
handling of aggregate arguments, as well as fixes inflexibilty in how
frontends can specify the kernel ABI. The most honest representation
of the amdgpu_kernel convention is to expose all kernel arguments as
loads from constant memory. Today, these are raw, SSA Argument values
and codegen is responsible for turning these into loads.
Background:
There currently isn't a satisfactory way to represent how arguments
for the amdgpu_kernel calling convention are passed. In reality,
arguments are passed in a single, flat, constant memory buffer
implicitly passed to the function. It is also illegal to call this
function in the IR, and this is only ever invoked by a driver of some
kind.
It does not make sense to have a stack passed parameter in this
context as is implied by byval. It is never valid to write to the
kernel arguments, as this would corrupt the inputs seen by other
dispatches of the kernel. These argumets are also not in the same
address space as the stack, so a copy is needed to an alloca. From a
source C-like language, the kernel parameters are invisible.
Semantically, a copy is always required from the constant argument
memory to a mutable variable.
The current clang calling convention lowering emits raw values,
including aggregates into the function argument list, since using
byval would not make sense. This has some unfortunate consequences for
the optimizer. In the aggregate case, we end up with an aggregate
store to alloca, which both SROA and instcombine turn into a store of
each aggregate field. The optimizer never pieces this back together to
see that this is really just a copy from constant memory, so we end up
stuck with expensive stack usage.
This also means the backend dictates the alignment of arguments, and
arbitrarily picks the LLVM IR ABI type alignment. By allowing an
explicit alignment, frontends can make better decisions. For example,
there's real no advantage to an aligment higher than 4, so a frontend
could choose to compact the argument layout. Similarly, there is a
high penalty to using an alignment lower than 4, so a frontend could
opt into more padding for small arguments.
Another design consideration is when it is appropriate to expose the
fact that these arguments are all really passed in adjacent
memory. Currently we have a late IR optimization pass in codegen to
rewrite the kernel argument values into explicit loads to enable
vectorization. In most programs, unrelated argument loads can be
merged together. However, exposing this property directly from the
frontend has some disadvantages. We still need a way to track the
original argument sizes and alignments to report to the driver. I find
using some side-channel, metadata mechanism to track this
unappealing. If the kernel arguments were exposed as a single buffer
to begin with, alias analysis would be unaware that the padding bits
betewen arguments are meaningless. Another family of problems is there
are still some gaps in replacing all of the available parameter
attributes with metadata equivalents once lowered to loads.
The immediate plan is to start using this new attribute to handle all
aggregate argumets for kernels. Long term, it makes sense to migrate
all kernel arguments, including scalars, to be passed indirectly in
the same manner.
Additional context is in D79744.
The getAllOnesValue can only handle things that are bitcast from a
ConstantInt, while here we bitcast through a pointer, so we may see more
complex objects (like Array or Struct).
Differential Revision: https://reviews.llvm.org/D83870
This patch
- adds `canCreateUndefOrPoison`
- refactors `canCreatePoison` so it can deal with constantexprs
`canCreateUndefOrPoison` will be used at D83926.
Reviewed By: nikic, jdoerfert
Differential Revision: https://reviews.llvm.org/D84007
Summary:
This change added a new inline advisor that takes optimization remarks from previous inlining as input, and provides the decision as advice so current inlining can replay inline decisions of a different compilation. Dwarf inline stack with line and discriminator is used as anchor for call sites including call context. The change can be useful for Inliner tuning as it provides a channel to allow external input for tweaking inline decisions. Existing alternatives like alwaysinline attribute is per-function, not per-callsite. Per-callsite inline intrinsic can be another solution (not yet existing), but it's intrusive to implement and also does not differentiate call context.
A switch -sample-profile-inline-replay=<inline_remarks_file> is added to hook up the new inline advisor with SampleProfileLoader's inline decision for replay. Since SampleProfileLoader does top-down inlining, inline decision can be specialized for each call context, hence we should be able to replay inlining accurately. However with a bottom-up inliner like CGSCC inlining, the replay can be limited due to lack of specialization for different call context. Apart from that limitation, the new inline advisor can still be used by regular CGSCC inliner later if needed for tuning purpose.
Subscribers: mgorny, aprantl, hiraditya, llvm-commits
Tags: #llvm
Resubmit for https://reviews.llvm.org/D84086
This is a step towards trying to remove unnecessary FP compares
with infinity when compiling with -ffinite-math-only or similar.
I'm intentionally not checking FMF on the fcmp itself because
I'm assuming that will go away eventually.
The analysis part of this was added with rGcd481136 for use with
isKnownNeverNaN. Similarly, that could be an enhancement here to
get predicates like 'one' and 'ueq'.
Differential Revision: https://reviews.llvm.org/D84035
Summary:
This change added a new inline advisor that takes optimization remarks for previous inlining as input, and provide the decision as advice so current inlining can replay inline decision of a different compilation. Dwarf inline stack with line and discriminator is used as anchor for call sites. The change can be useful for Inliner tuning.
A switch -sample-profile-inline-replay=<inline_remarks_file> is added to hook up the new inliner advisor with SampleProfileLoader's inline decision for replay. The new inline advisor can also be used by regular CGSCC inliner later if needed.
Reviewers: davidxl, mtrofin, wmi, hoy
Subscribers: aprantl, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83743
Many tests use opt's -analyze feature, which does not translate well to
NPM and has better alternatives. The alternative here is to explicitly
add a pass that calls ScalarEvolution::print().
The legacy pass manager RUNs aren't changing, but they are now pinned to
the legacy pass manager. For each legacy pass manager RUN, I added a
corresponding NPM RUN using the 'print<scalar-evolution>' pass. For
compatibility with update_analyze_test_checks.py and existing test
CHECKs, 'print<scalar-evolution>' now prints what -analyze prints per
function.
This was generated by the following Python script and failures were
manually fixed up:
import sys
for i in sys.argv:
with open(i, 'r') as f:
s = f.read()
with open(i, 'w') as f:
for l in s.splitlines():
if "RUN:" in l and ' -analyze ' in l and '\\' not in l:
f.write(l.replace(' -analyze ', ' -analyze -enable-new-pm=0 '))
f.write('\n')
f.write(l.replace(' -analyze ', ' -disable-output ').replace(' -scalar-evolution ', ' "-passes=print<scalar-evolution>" ').replace(" | ", " 2>&1 | "))
f.write('\n')
else:
f.write(l)
There are a couple failures still in ScalarEvolution under NPM, but
those are due to other unrelated naming conflicts.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D83798
When the byref attribute is added, there will need to be two similar
functions for the existing cases which have an associate value copy,
and byref which does not. Most, but not all of the existing uses will
use the existing version.
The associated size function added by D82679 also needs to
contextually differ, and will help eliminate a few places still
relying on pointee element types.
The IR doesn't have a proper concept of invalid pointers, and "null"
constants are just all zeros (though it really needs one).
I think it's not possible to break this for AMDGPU due to the copy
semantics of byval. If you have an original stack object at 0, the
byval copy will be placed above it so I don't think it's really
possible to hit a 0 address.
As shown in D82998, the basic-aa-recphi option can cause miscompiles for
gep's with negative constants. The option checks for recursive phi, that
recurse through a contant gep. If it finds one, it performs aliasing
calculations using the other phi operands with an unknown size, to
specify that an unknown number of elements after the initial value are
potentially accessed. This works fine expect where the constant is
negative, as the size is still considered to be positive. So this patch
expands the check to make sure that the constant is also positive.
Differential Revision: https://reviews.llvm.org/D83576
This reverts most of the following patches due to reports of miscompiles.
I've left the added test cases with comments updated to be FIXMEs.
1cf6f210a2 [IR] Disable select ? C : undef -> C fold in ConstantFoldSelectInstruction unless we know C isn't poison.
469da663f2 [InstSimplify] Re-enable select ?, undef, X -> X transform when X is provably not poison
122b0640fc [InstSimplify] Don't fold vectors of partial undef in SimplifySelectInst if the non-undef element value might produce poison
ac0af12ed2 [InstSimplify] Add test cases for opportunities to fold select ?, X, undef -> X when we can prove X isn't poison
9b1e95329a [InstSimplify] Remove select ?, undef, X -> X and select ?, X, undef -> X transforms
Summary:
This change avoids exposing tensorflow types when including TFUtils.h.
They are just an implementation detail, and don't need to be used
directly when implementing an analysis requiring ML model evaluation.
The TFUtils APIs, while generically typed, are still not exposed unless
the tensorflow C library is present, as they currently have no use
otherwise.
Reviewers: mehdi_amini, davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83843
Since D82572, we keep "reference" edges for callback call sites. While
not strictly necessary they can improve the traversal order. However, we
did not update them properly in case a pass removed the callback call
site which caused a verification error (PR46687). With this patch we
update these reference edges properly during the invocation of
`CallGraphSCCPass::RefreshCallGraph` in non-checking mode.
Reviewed By: sdmitriev
Differential Revision: https://reviews.llvm.org/D83718
Summary:
Ignore callback uses when adding a callback function
in the CallGraph. Callback functions are typically
created when outlining, e.g. for OpenMP, so they have
internal scope and linkage. They should not be added
to the ExternalCallingNode since they are only callable
by the specified caller function at creation time.
A CGSCC pass, such as OpenMPOpt, may need to update
the CallGraph by adding a new outlined callback function.
Without ignoring callback uses, adding breaks CGSCC
pass restrictions and results to a broken CallGraph.
Reviewers: jdoerfert
Subscribers: hiraditya, sstefan1, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83370
Summary:
Add debug counter and stats counter to assume queries and assume builder
here is the collected stats on a build of check-llvm + check-clang.
"assume-builder.NumAssumeBuilt": 2720879,
"assume-builder.NumAssumesMerged": 761396,
"assume-builder.NumAssumesRemoved": 1576212,
"assume-builder.NumBundlesInAssumes": 6518809,
"assume-queries.NumAssumeQueries": 85566380,
"assume-queries.NumUsefullAssumeQueries": 2727360,
the NumUsefullAssumeQueries stat is actually pessimistic because in a few places queries
ask to keep providing information to try to get better information. and this isn't counted
as a usefull query evem tho it can be usefull
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83506
This fixes warnings raised by Clang's new -Wsuggest-override, in preparation for enabling that warning in the LLVM build. This patch also removes the virtual keyword where redundant, but only in places where doing so improves consistency within a given file. It also removes a couple unnecessary virtual destructor declarations in derived classes where the destructor inherited from the base class is already virtual.
Differential Revision: https://reviews.llvm.org/D83709
Here we teach the ConstantFolding analysis pass that it is not legal to
replace a load of a bitcast constant (having a non-integral addrspace)
with a bitcast of the value of that constant (with a different
non-integral addrspace).
But also teach it that certain bit patterns are always known and
convertable (a fact it already uses elsewhere). This required us to also
fix a globalopt test, since, after this change, LLVM is able to realize
that the test actually is a valid transform (NULL is always a known
bit-pattern) and so it doesn't need to emit the failure remarks for it.
Also simplify some of the negative tests for transforms by avoiding a
type change in their bitcast, and add positive versions of the same
tests, to show that they otherwise should work.
Differential Revision: https://reviews.llvm.org/D59730
This reverts commit 9908a3b9f5.
The fix was to exclude the content of TFUtils.h (automatically
included in the LLVM_Analysis module, when LLVM_ENABLE_MODULES is enabled).
Differential Revision: https://reviews.llvm.org/D82817
Summary:
NOTE: There is a mailing list discussion on this: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
Complemantary to the assumption outliner prototype in D71692, this patch
shows how we could simplify the code emitted for an alignemnt
assumption. The generated code is smaller, less fragile, and it makes it
easier to recognize the additional use as a "assumption use".
As mentioned in D71692 and on the mailing list, we could adopt this
scheme, and similar schemes for other patterns, without adopting the
assumption outlining.
Reviewers: hfinkel, xbolva00, lebedev.ri, nikic, rjmccall, spatel, jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: thopre, yamauchi, kuter, fhahn, merge_guards_bot, hiraditya, bollu, rkruppe, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71739
This is in preparation for the 'development' mode advisor. We currently
want to track what the default policy's decision would have been, this
refactoring makes it easier to do that.
Also compacted the checkpoints (variables) to one file (plus the index).
This reduces the binary model files to just the variables and their
index. The index is very small. The variables are serialized float
arrays. When updated through training, the changes are very likely
unlocalized, so there's very little value in them being anything else
than binary.
Summary:
This is an experimental ML-based native size estimator, necessary for
computing partial rewards during -Oz inliner policy training. Data
extraction for model training will be provided in a separate patch.
RFC: http://lists.llvm.org/pipermail/llvm-dev/2020-April/140763.html
Reviewers: davidxl, jdoerfert
Subscribers: mgorny, hiraditya, mgrang, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82817
Summary:
eraseBlock is trying to erase all probability info for the given BB.
This info is stored in a DenseMap organized like so:
using Edge = std::pair<const BasicBlock *, unsigned>;
DenseMap<Edge, BranchProbability> Probs;
where the unsigned in the Edge key is the successor id.
It was walking through every single map entry, checking if the BB in the
key's pair matched the given BB. Much more efficient is to do what
another method (getEdgeProbability) was already doing, which is to walk
the successors of the BB, and simply do a map lookup on the key formed
from each <BB, successor id> pair.
Doing this dropped the overall compile time for a file containing a
very large function by around 32%.
Reviewers: davidxl, xur
Subscribers: llvm-commits, hiraditya
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83596
Summary:
This patch separates the peeling specific parameters from the UnrollingPreferences,
and creates a new struct called PeelingPreferences. Functions which used the
UnrollingPreferences struct for peeling have been updated to use the PeelingPreferences struct.
Author: sidbav (Sidharth Baveja)
Reviewers: Whitney (Whitney Tsang), Meinersbur (Michael Kruse), skatkov (Serguei Katkov), ashlykov (Arkady Shlykov), bogner (Justin Bogner), hfinkel (Hal Finkel), anhtuyen (Anh Tuyen Tran), nikic (Nikita Popov)
Reviewed By: Meinersbur (Michael Kruse)
Subscribers: fhahn (Florian Hahn), hiraditya (Aditya Kumar), llvm-commits, LLVM
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D80580
This silences the warning below:
llvm-project/llvm/lib/Analysis/DomTreeUpdater.cpp:510:20: warning: loop variable 'BB' is always a copy because the range of type 'const SmallPtrSet<llvm::BasicBlock *, 8>' does not return a reference [-Wrange-loop-analysis]
for (const auto &BB : DeletedBBs) {
^
llvm-project/llvm/lib/Analysis/DomTreeUpdater.cpp:510:8: note: use non-reference type 'llvm::BasicBlock *'
for (const auto &BB : DeletedBBs) {
^~~~~~~~~~~~~~~~
1 warning generated.
Summary: This patch moves OrderedInstructions to CodeMoverUtils as It was
the only place where OrderedInstructions is required.
Authored By: RithikSharma
Reviewer: Whitney, bmahjour, etiotto, fhahn, nikic
Reviewed By: Whitney, nikic
Subscribers: mgorny, hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D80643
Change file static function getEntryForPercentile to be a static member function
in ProfileSummaryBuilder so it can be used by other files.
Differential Revision: https://reviews.llvm.org/D83439
Summary:
Ignore callback uses when adding a callback function
in the CallGraph. Callback functions are typically
created when outlining, e.g. for OpenMP, so they have
internal scope and linkage. They should not be added
to the ExternalCallingNode since they are only callable
by the specified caller function at creation time.
A CGSCC pass, such as OpenMPOpt, may need to update
the CallGraph by adding a new outlined callback function.
Without ignoring callback uses, adding breaks CGSCC
pass restrictions and results to a broken CallGraph.
Reviewers: jdoerfert
Subscribers: hiraditya, sstefan1, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83370
Follow up from the transform being removed in D83360. If X is probably not poison, then the transform is safe.
Still plan to remove or adjust the code from ConstantFolding after this.
Differential Revision: https://reviews.llvm.org/D83440
We can't fold to the non-undef value unless we know it isn't poison. So check each element with isGuaranteedNotToBeUndefOrPoison. This currently rules out all constant expressions.
Differential Revision: https://reviews.llvm.org/D83442