Commit Graph

1472 Commits

Author SHA1 Message Date
Max Kazantsev 48d7cc6ae2 [SCEV] Fix incorrect treatment of max taken count. PR48225
SCEV makes a logical mistake when handling EitherMayExit in
case when both conditions must be met to exit the loop. The
mistake looks like follows: "if condition `A` fails within at most `X` first
iterations, and `B` fails within at most `Y` first iterations, then `A & B`
fails at most within `min (X, Y)` first iterations". This is wrong, because
both of them must fail at the same time.

Simple example illustrating this is following: we have an IV with step 1,
condition `A` = "IV is even", condition `B` = "IV is odd". Both `A` and `B`
will fail within first two iterations. But it doesn't mean that both of them
will fail within first two first iterations at the same time, which would mean
that IV is neither even nor odd at the same time within first 2 iterations.

We can only do so for known exact BE counts, but not for max.

Differential Revision: https://reviews.llvm.org/D91942
Reviewed By: nikic
2020-11-23 16:52:39 +07:00
Max Kazantsev 47e31d1b5e [NFC] Reduce code duplication in binop processing in computeExitLimitFromCondCached
Handling of `and` and `or` vastly uses copy-paste. Factored out into
a helper function as preparation step for further fix (see PR48225).

Differential Revision: https://reviews.llvm.org/D91864
Reviewed By: nikic
2020-11-23 13:18:12 +07:00
Philip Reames 0f41a2fe83 test commit for new client 2020-11-16 17:26:52 -08:00
Philip Reames 257d33c815 [SCEV] Factor out part of wrap flag detection logic [NFC](try 2)
This is a cut down version of 1ec6e1 which was reverted due to a compile time issue.  The key changes made from that patch: 1) only infer the flags needed along each path, 2) be careful to preserve order of checks, and 3) avoid computing NW flags at all since we need to prove the stronger property (does not cross 0) in the caller anyways.

Assuming this doesn't trip regressions, I'm going to try weakening (1).  My end objective is to move flag inference into addrec construction.  If I can't weaken (1) without compile time impact, I'll have a problem.
2020-11-16 12:07:21 -08:00
Nikita Popov 9ace4b337f Revert "[SCEV] Factor out part of wrap flag detection logic [NFC-ish]"
This reverts commit 1ec6e1eb8a.

This change causes a significant compile-time regression:
https://llvm-compile-time-tracker.com/compare.php?from=dd0b8b94d0796bd895cc998dd163b4fbebceb0b8&to=1ec6e1eb8a084bffae8a40236eb9925d8026dd07&stat=instructions

I assume that this is due to the non-NFC part of the change, which
now performs expensive nowrap inference even for nowrap flags that
are not used by the particular code.
2020-11-15 10:19:44 +01:00
Philip Reames 1ec6e1eb8a [SCEV] Factor out part of wrap flag detection logic [NFC-ish]
In an effort to make code around flag determination more readable, and (possibly) prepare for a follow up change, factor out some of the flag detection logic.  In the process, reduce the number of locations we mutate wrap flags by a couple.

Note that this isn't NFC.  The old code tried for NSW xor (NUW || NW).  This is, two different paths computed different sets of wrap flags.  The new code will try for all three.  The result is that some expressions end up with a few extra flags set.
2020-11-14 19:21:05 -08:00
Nikita Popov f3124a46c1 [SCEV] Fix nsw flags for GEP expressions
The SCEV code for constructing GEP expressions currently assumes
that the addition of the base and all the offsets is nsw if the GEP
is inbounds. While the addition of the offsets is indeed nsw, the
addition to the base address is not, as the base address is
interpreted as an unsigned value.

Fix the GEP expression code to not assume nsw for the base+offset
calculation. However, do assume nuw if we know that the offset is
non-negative. With this, we use the same behavior as the
construction of GEP addrecs does. (Modulo the fact that we
disregard SCEV unification, as the pre-existing FIXME points out).

Differential Revision: https://reviews.llvm.org/D90648
2020-11-13 18:19:32 +01:00
Max Kazantsev 0a1d394bf3 [NFC] Refactor loop-invariant getters to return Optional 2020-11-13 15:03:10 +07:00
Max Kazantsev 2734a9ebf4 [NFC][SCEV] Generalize monotonicity check for full and limited iteration space
A piece of logic of `isLoopInvariantExitCondDuringFirstIterations` is actually
a generalized predicate monotonicity check. This patch moves it into the
corresponding method and generalizes it a bit.

Differential Revision: https://reviews.llvm.org/D90395
Reviewed By: apilipenko
2020-11-12 12:37:07 +07:00
Max Kazantsev 7dcc889917 [SCEV] Generalize no-self-wrap check in isLoopInvariantExitCondDuringFirstIterations
Lift limitation on step being `+/- 1`. In fact, the only thing it is needed for
is proving no-self-wrap. We can instead check this flag directly.

Theoretically it can increase the scope of the transform, but I could not
construct such test easily.

Differential Revision: https://reviews.llvm.org/D91126
Reviewed By: apilipenko
2020-11-11 11:17:13 +07:00
David Green b2ac9681a7 [ARM] Alter t2DoLoopStart to define lr
This changes the definition of t2DoLoopStart from
t2DoLoopStart rGPR
to
GPRlr = t2DoLoopStart rGPR

This will hopefully mean that low overhead loops are more tied together,
and we can more reliably generate loops without reverting or being at
the whims of the register allocator.

This is a fairly simple change in itself, but leads to a number of other
required alterations.

 - The hardware loop pass, if UsePhi is set, now generates loops of the
   form:
       %start = llvm.start.loop.iterations(%N)
     loop:
       %p = phi [%start], [%dec]
       %dec = llvm.loop.decrement.reg(%p, 1)
       %c = icmp ne %dec, 0
       br %c, loop, exit
 - For this a new llvm.start.loop.iterations intrinsic was added, identical
   to llvm.set.loop.iterations but produces a value as seen above, gluing
   the loop together more through def-use chains.
 - This new instrinsic conceptually produces the same output as input,
   which is taught to SCEV so that the checks in MVETailPredication are not
   affected.
 - Some minor changes are needed to the ARMLowOverheadLoop pass, but it has
   been left mostly as before. We should now more reliably be able to tell
   that the t2DoLoopStart is correct without having to prove it, but
   t2WhileLoopStart and tail-predicated loops will remain the same.
 - And all the tests have been updated. There are a lot of them!

This patch on it's own might cause more trouble that it helps, with more
tail-predicated loops being reverted, but some additional patches can
hopefully improve upon that to get to something that is better overall.

Differential Revision: https://reviews.llvm.org/D89881
2020-11-10 15:57:58 +00:00
Max Kazantsev 3ec69c16c3 [NFC] Different way of getting step 2020-11-10 13:48:02 +07:00
Max Kazantsev 6022a8b7e8 [SCEV] Drop cached ranges of AddRecs after flag update
Our range computation methods benefit from no-wrap flags. But if the ranges
were first computed before the flags were set, the cached range will be too
pessimistic.

We need to drop cached ranges whenever we sharpen AddRec's no wrap flags.

Differential Revision: https://reviews.llvm.org/D89847
Reviewed By: fhahn
2020-11-10 12:37:12 +07:00
Max Kazantsev ab7ef35d34 Revert "[SCEV] Handle non-positive case in isImpliedViaOperations"
This reverts commit 8dc98897c4.

Commited by mistake.
2020-11-05 11:27:55 +07:00
Max Kazantsev 8dc98897c4 [SCEV] Handle non-positive case in isImpliedViaOperations
We already handle non-negative case there. Add support for non-positive.
2020-11-05 11:07:37 +07:00
Nikita Popov cc91554ebb [SCEV] Delay strengthening of nowrap flags
Strengthening nowrap flags is relatively expensive. Make sure we
only do it if we're actually going to use the flags -- we don't
use them for many recursive invocations. Additionally, if we're
reusing an existing SCEV node, there's no point in trying to
strengthen the flags if we don't have any new baseline facts.

This change falls slightly short of being NFC, because the way
flags during add+addrec / mul+addrec folding are handled may be
more precise (as less operands are included in the calculation).
2020-11-01 22:18:07 +01:00
Nikita Popov 6ec56467cb [SCEV] Construct GEP expression more efficiently (NFCI)
Instead of performing a sequence of pairwise additions, directly
construct a multi-operand add expression.

This should be NFC modulo any SCEV canonicalization deficiencies.
2020-11-01 19:00:57 +01:00
Roman Lebedev ef22d500f7
[NFCI][SCEV] getPtrToIntExpr(): use SCEVRewriteVisitor<> for ptrtoint cast sinking
This is functionally-identical to the previous implementation,
just using a generic interface to do that instead of hand-rolled one,
with caching as a bonus. Thought the sinking is still recursive..

Note that SCEVRewriteVisitor<>'s default implementations
don't preserve NoWrap flags on Add/Mul (but does on AddRec!),
but here we know we can preserve them,
so `visitAddExpr()`/`visitMulExpr()` are specialized.
2020-10-30 17:05:14 +03:00
Roman Lebedev b4916918e5
[SCEV] SCEVPtrToIntExpr simplifications
If we've got an SCEVPtrToIntExpr(op), where op is not an SCEVUnknown,
we want to sink the SCEVPtrToIntExpr into an operand,
so that the operation is performed on integers,
and eventually we end up with just an `SCEVPtrToIntExpr(SCEVUnknown)`.

Reviewed By: mkazantsev

Differential Revision: https://reviews.llvm.org/D89692
2020-10-30 11:13:35 +03:00
Roman Lebedev 81fc53a36a
[SCEV] Introduce SCEVPtrToIntExpr (PR46786)
And use it to model LLVM IR's `ptrtoint` cast.

This is essentially an alternative to D88806, but with no chance for
all the problems it caused due to having the cast as implicit there.
(see rG7ee6c402474a2f5fd21c403e7529f97f6362fdb3)

As we've established by now, there are at least two reasons why we want this:
* It will allow SCEV to actually model the `ptrtoint` casts
  and their operands, instead of treating them as `SCEVUnknown`
* It should help with initial problem of PR46786 - this should eventually allow us
  to not loose pointer-ness of an expression in more cases

As discussed in [[ https://bugs.llvm.org/show_bug.cgi?id=46786 | PR46786 ]], in principle,
we could just extend `SCEVUnknown` with a `is ptrtoint` cast, because `ScalarEvolution::getPtrToIntExpr()`
should sink the cast as far down into the expression as possible,
so in the end we should always end up with `SCEVPtrToIntExpr` of `SCEVUnknown`.

But i think that it isn't the best solution, because it doesn't really matter
from memory consumption side - there probably won't be *that* many `SCEVPtrToIntExpr`s
for it to matter, and it allows for much better discoverability.

Reviewed By: mkazantsev

Differential Revision: https://reviews.llvm.org/D89456
2020-10-30 11:13:35 +03:00
Max Kazantsev 3fc601b641 [NFC][SCEV] Use generic predicate checkers to simplify code 2020-10-29 18:12:28 +07:00
Florian Hahn 88d6421e4c [SCEV] Match 'zext (trunc A to iB) to iY' as URem.
URem operations with constant power-of-2 second operands are modeled as
such. This patch on its own has very little impact (e.g. no changes in
CodeGen for MultiSource/SPEC2000/SPEC2006 on X86 -O3 -flto), but I'll
soon post follow-up patches that make use of it to more accurately
determine the trip multiple.

Reviewed By: mkazantsev

Differential Revision: https://reviews.llvm.org/D89821
2020-10-29 10:46:52 +00:00
Max Kazantsev ef129f01e9 [SCEV][NFC] Use general predicate checkers in monotonicity check
This makes the code more compact and readable.
2020-10-29 16:45:52 +07:00
Max Kazantsev a5b2e795c3 [NFC][SCEV] Refactor monotonic predicate checks to return enums instead of bools
This patch gets rid of output parameter which is not needed for most users
and prepares this API for further refactoring.
2020-10-29 16:01:25 +07:00
Max Kazantsev 160a453138 Return "[IndVars] Remove monotonic checks with unknown exit count"
This reverts commit e038b60d91.
This reverts commit a0d84d8031.

This revert was a mistake. The reason of the failures was
"Use uint64_t for branch weights instead of uint32_t"

Differential Revision: https://reviews.llvm.org/D87832
2020-10-28 18:51:40 +07:00
Max Kazantsev 5ef84688fb Re-enable "[SCEV] Prove implications of different type via truncation"
When we need to prove implication of expressions of different type width,
the default strategy is to widen everything to wider type and prove in this
type. This does not interact well with AddRecs with negative steps and
unsigned predicates: such AddRec will likely not have a `nuw` flag, and its
`zext` to wider type will not be an AddRec. In contraty, `trunc` of an AddRec
in some cases can easily be proved to be an `AddRec` too.

This patch introduces an alternative way to handling implications of different
type widths. If we can prove that wider type values actually fit in the narrow type,
we truncate them and prove the implication in narrow type.

The return was due to revert of underlying patch that this one depends on.

Unit test temporarily disabled because the required logic in SCEV is switched
off due to compile time reasons.

Differential Revision: https://reviews.llvm.org/D89548
2020-10-28 16:02:14 +07:00
Max Kazantsev 624fc63a05 [SCEV] Re-enable "Use nw flag and symbolic iteration count to sharpen ranges of AddRecs", attempt 3
We can sharpen the range of a AddRec if we know that it does not
self-wrap and know the symbolic iteration count in the loop. If we can
evaluate the value of AddRec on the last iteration and prove that at least
one its intermediate value lies between start and end, then no-wrap flag
allows us to conclude that all of them also lie between start and end. So
the estimate of range can be improved to union of ranges of start and end.

Switched off by default, can be turned on by flag.

Differential Revision: https://reviews.llvm.org/D89381
Reviewed By: lebedev.ri, nikic
2020-10-28 12:39:41 +07:00
Raphael Isemann e038b60d91 Revert "[IndVars] Remove monotonic checks with unknown exit count"
This reverts commit c6ca26c0bf.
This breaks stage2 builds due to hitting this assert:
```
   Assertion failed: (WeightSum <= UINT32_MAX && "Expected weights to scale down to 32 bits"), function calcMetadataWeights
```
when compiling AArch64RegisterBankInfo.cpp in LLVM.
2020-10-27 15:31:37 +01:00
Max Kazantsev c6ca26c0bf [IndVars] Remove monotonic checks with unknown exit count
Even if the exact exit count is unknown, we can still prove that this
exit will not be taken. If we can prove that the predicate is monotonic,
fulfilled on first & last iteration, and no overflow happened in between,
then the check can be removed.

Differential Revision: https://reviews.llvm.org/D87832
Reviewed By: apilipenko
2020-10-27 11:35:16 +07:00
Nikita Popov ebeef022aa [SCEV] Strenthen nowrap flags after constant folding for mul exprs
Same change as 0dda633317, but for
mul expressions. We want to first fold any constant operans and
then strengthen the nowrap flags, as we can compute more precise
flags at that point.
2020-10-25 19:43:58 +01:00
Nikita Popov 1ff313f098 [SCEV] Always constant fold mul expression operands
Establish parity with the handling of add expressions, by always
constant folding mul expression operands before checking the depth
limit (this is a non-recursive simplification). The code was already
unconditionally constant folding the case where all operands were
constants, but was not folding multiple constant operands together
if there were also non-constant operands.

This requires picking out a different demonstration for depth-based
folding differences in the limit-depth.ll test.
2020-10-25 18:50:06 +01:00
Nikita Popov 22a5cde541 [SCEV] Separate out constant folding in mul expr creation
Separate out the code handling constant folding into a separate
block, that is independent of other folds that need a constant
first operand. Also make some minor adjustments to make the
constant folding look nearly identical to the same code in
getAddExpr().

The only reason this change is not strictly NFC is that the
C1*(C2+V) fold is moved below the constant folding, which means
that it now also applies to C1*C2*(C3+V), as it should.
2020-10-25 18:46:50 +01:00
Nikita Popov 0dda633317 [SCEV] Strength nowrap flags after constant folding
We should first try to constant fold the add expression and only
strengthen nowrap flags afterwards. This allows us to determine
stronger flags if e.g. only two operands are left after constant
folding (and thus "guaranteed no wrap region" code applies) or the
resulting operands are non-negative and thus nsw->nuw strengthening
applies.
2020-10-25 18:00:22 +01:00
Max Kazantsev 6e574abf61 [SCEV][NFC] Cache symbolic max exit count
We want to have a caching version of symbolic BE exit count
rather than recompute it every time we need it.

Differential Revision: https://reviews.llvm.org/D89954
Reviewed By: nikic, efriedma
2020-10-23 12:29:37 +07:00
Max Kazantsev cc2eb3b5e2 [SCEV][NFC] Simplify internals of BackedgeTakenInfo 2020-10-22 17:39:56 +07:00
Max Kazantsev e2858bf633 [SCEV][NFC] Rename MaxAndComplete -> ConstantMaxAndComplete
This better reflects what this variable is about.
2020-10-22 16:37:06 +07:00
Max Kazantsev 6379090ea7 [SCEV][NFC] Rename getMax -> getConstantMax
This better reflects what this logic actually does.
2020-10-22 15:12:54 +07:00
Max Kazantsev bed02fa8b0 Revert "[SCEV] Prove implications of different type via truncation"
This reverts commit 80852a4f2f.

Test is now broken because underlying required patch was also reverted SUDDENLY.
2020-10-21 13:03:46 +07:00
Max Kazantsev 80852a4f2f [SCEV] Prove implications of different type via truncation
When we need to prove implication of expressions of different type width,
the default strategy is to widen everything to wider type and prove in this
type. This does not interact well with AddRecs with negative steps and
unsigned predicates: such AddRec will likely not have a `nuw` flag, and its
`zext` to wider type will not be an AddRec. In contraty, `trunc` of an AddRec
in some cases can easily be proved to be an `AddRec` too.

This patch introduces an alternative way to handling implications of different
type widths. If we can prove that wider type values actually fit in the narrow type,
we truncate them and prove the implication in narrow type.

Differential Revision: https://reviews.llvm.org/D89548
Reviewed By: fhahn
2020-10-21 12:53:22 +07:00
Fangrui Song d9f91a3d14 Revert D89381 "[SCEV] Recommit "Use nw flag and symbolic iteration count to sharpen ranges of AddRecs", attempt 2"
This reverts commit a10a64e7e3.

It broke polly/test/ScopInfo/NonAffine/non-affine-loop-condition-dependent-access_3.ll
The difference suggests that this may be a serious issue.
2020-10-20 21:03:58 -07:00
Max Kazantsev a10a64e7e3 [SCEV] Recommit "Use nw flag and symbolic iteration count to sharpen ranges of AddRecs", attempt 2
Fixed wrapping range case & proof methods reduced to constant range
checks to save compile time.

Differential Revision: https://reviews.llvm.org/D89381
2020-10-20 11:32:36 +07:00
Roman Lebedev e0567582b8
[NFCI][SCEV] Always refer to enum SCEVTypes as enum, not integer
The main tricky thing here is forward-declaring the enum:
we have to specify it's underlying data type.

In particular, this avoids the danger of switching over the SCEVTypes,
but actually switching over an integer, and not being notified
when some case is not handled.

I have updated most of such switches to be exaustive and not have
a default case, where it's pretty obvious to be the intent,
however not all of them.
2020-10-20 00:10:22 +03:00
Roman Lebedev d4b0aa9773
[NFC][SCEV] BuildConstantFromSCEV(): reformat, NFC
Makes diff in next commit more readable
2020-10-20 00:10:22 +03:00
Roman Lebedev d083d55c2c
[NFC][SCEV] Rename SCEVCastExpr into SCEVIntegralCastExpr
All existing SCEV cast types operate on integers.
D89456 will add SCEVPtrToIntExpr cast expression type.
I believe this is best for consistency.

Reviewed By: mkazantsev

Differential Revision: https://reviews.llvm.org/D89455
2020-10-19 10:59:53 +03:00
Max Kazantsev 199826baa8 [NFC][SCEV] Use getMinusOne where possible 2020-10-19 12:56:09 +07:00
Roman Lebedev ec54867df5
[SCEV] Model `ashr exact x, C` as `(abs(x) EXACT/u (1<<C)) * signum(x)`
It's not pretty, but probably better than modelling it
as an opaque SCEVUnknown, i guess.

It is relevant e.g. for the loop that was brought up in
https://bugs.llvm.org/show_bug.cgi?id=46786#c26
as an example of what we'd be able to better analyze
once SCEV handles `ptrtoint` (D89456).

But as it is evident, even if we deal with `ptrtoint` there,
we also fail to model such an `ashr`.
Also, modeling of mul-of-exact-shr/div could use improvement.

As per alive2:
https://alive2.llvm.org/ce/z/tnfZKd
```
define i8 @src(i8 %0) {
  %2 = ashr exact i8 %0, 4
  ret i8 %2
}

declare i8 @llvm.abs(i8, i1)
declare i8 @llvm.smin(i8, i8)
declare i8 @llvm.smax(i8, i8)

define i8 @tgt(i8 %x) {
  %abs_x = call i8 @llvm.abs(i8 %x, i1 false)
  %div = udiv exact i8 %abs_x, 16
  %t0 = call i8 @llvm.smax(i8 %x, i8 -1)
  %t1 = call i8 @llvm.smin(i8 %t0, i8 1)
  %r = mul nsw i8 %div, %t1
  ret i8 %r
}
```
Transformation seems to be correct!
2020-10-17 21:22:24 +03:00
Roman Lebedev 130cc662b5
[NFC][SCEV] Refactor getAbsExpr() out of createSCEV() 2020-10-17 21:21:02 +03:00
Roman Lebedev be1678bdb9
[NFC][SCEV] Add 'getMinusOne()' method 2020-10-17 21:20:58 +03:00
Nikita Popov 74c8c2d903 Revert "Recommit "[SCEV] Use nw flag and symbolic iteration count to sharpen ranges of AddRecs""
This reverts commit 32b72c3165.

While better than before, this change still introduces a large
compile-time regression (>3% on mafft):
https://llvm-compile-time-tracker.com/compare.php?from=fbd62fe60fb2281ca33da35dc25ca3c87ec0bb51&to=32b72c3165bf65cca2e8e6197b59eb4c4b60392a&stat=instructions

Additionally, the logic here doesn't look quite right to me,
I will comment in more detail on the differential revision.
2020-10-16 21:36:33 +02:00
Max Kazantsev 32b72c3165 Recommit "[SCEV] Use nw flag and symbolic iteration count to sharpen ranges of AddRecs"
It was reverted because of negative compile time impact. In this version,
less powerful proof methods are used (non-recursive reasoning only), and
scope limited to constant End values to avoid explision of complex proofs.

Differential Revision: https://reviews.llvm.org/D89381
2020-10-16 17:35:13 +07:00