We referred to all declaration in definitions in our diagnostic messages
which is can be inaccurate. Instead, classify the declaration and emit
an appropriate diagnostic for the new declaration and an appropriate
note pointing to the old one.
This fixes PR24116.
llvm-svn: 242190
Introduce co- and contra-variance for Objective-C type parameters,
which allows us to express that (for example) an NSArray is covariant
in its type parameter. This means that NSArray<NSMutableString *> * is
a subtype of NSArray<NSString *> *, which is expected of the immutable
Foundation collections.
Type parameters can be annotated with __covariant or __contravariant
to make them co- or contra-variant, respectively. This feature can be
detected by __has_feature(objc_generics_variance). Implements
rdar://problem/20217490.
llvm-svn: 241549
The __kindof type qualifier can be applied to Objective-C object
(pointer) types to indicate id-like behavior, which includes implicit
"downcasting" of __kindof types to subclasses and id-like message-send
behavior. __kindof types provide better type bounds for substitutions
into unspecified generic types, which preserves more type information.
llvm-svn: 241548
Warn in cases where one has provided redundant protocol qualification
that might be a typo for a specialization, e.g., NSArray<NSObject>,
which is pointless (NSArray declares that it conforms to NSObject) and
is likely to be a typo for NSArray<NSObject *>, i.e., an array of
NSObject pointers. This warning is very narrow, only applying when the
base type being qualified is parameterized, has the same number of
parameters as their are protocols listed, all of the names can also
refer to types (including Objective-C class types, of course), and at
least one of those types is an Objective-C class (making this a typo
for a missing '*'). The limitations are partly for performance reasons
(we don't want to do redundant name lookup unless we really need to),
and because we want the warning to apply in very limited cases to
limit false positives.
Part of rdar://problem/6294649.
llvm-svn: 241547
Objective-C collection literals produce unspecialized
NSArray/NSDictionary objects that can then be implicitly converted to
specialized versions of these types. In such cases, check that the
elements in the collection are suitable for the specialized
collection. Part of rdar://problem/6294649.
llvm-svn: 241546
Teach C++'s tentative parsing to handle specializations of Objective-C
class types (e.g., NSArray<NSString *>) as well as Objective-C
protocol qualifiers (id<NSCopying>) by extending type-annotation
tokens to handle this case. As part of this, remove Objective-C
protocol qualifiers from the declaration specifiers, which never
really made sense: instead, provide Sema entry points to make them
part of the type annotation token. Among other things, this properly
diagnoses bogus types such as "<NSCopying> id" which should have been
written as "id <NSCopying>".
Implements template instantiation support for, e.g., NSArray<T>*
in C++. Note that parameterized classes are not templates in the C++
sense, so that cannot (for example) be used as a template argument for
a template template parameter. Part of rdar://problem/6294649.
llvm-svn: 241545
The Objective-C common-type computation had a few problems that
required a significant rework, including:
- Quadradic behavior when finding the common base type; now it's
linear.
- Keeping around type arguments when computing the common type
between a specialized and an unspecialized type
- Introducing redundant protocol qualifiers.
Part of rdar://problem/6294649. Also fixes rdar://problem/19572837 by
addressing a longstanding bug in
ASTContext::CollectInheritedProtocols().
llvm-svn: 241544
When messaging a method that was defined in an Objective-C class (or
category or extension thereof) that has type parameters, substitute
the type arguments for those type parameters. Similarly, substitute
into property accesses, instance variables, and other references.
This includes general infrastructure for substituting the type
arguments associated with an ObjCObject(Pointer)Type into a type
referenced within a particular context, handling all of the
substitutions required to deal with (e.g.) inheritance involving
parameterized classes. In cases where no type arguments are available
(e.g., because we're messaging via some unspecialized type, id, etc.),
we substitute in the type bounds for the type parameters instead.
Example:
@interface NSSet<T : id<NSCopying>> : NSObject <NSCopying>
- (T)firstObject;
@end
void f(NSSet<NSString *> *stringSet, NSSet *anySet) {
[stringSet firstObject]; // produces NSString*
[anySet firstObject]; // produces id<NSCopying> (the bound)
}
When substituting for the type parameters given an unspecialized
context (i.e., no specific type arguments were given), substituting
the type bounds unconditionally produces type signatures that are too
strong compared to the pre-generics signatures. Instead, use the
following rule:
- In covariant positions, such as method return types, replace type
parameters with “id” or “Class” (the latter only when the type
parameter bound is “Class” or qualified class, e.g,
“Class<NSCopying>”)
- In other positions (e.g., parameter types), replace type
parameters with their type bounds.
- When a specialized Objective-C object or object pointer type
contains a type parameter in its type arguments (e.g.,
NSArray<T>*, but not NSArray<NSString *> *), replace the entire
object/object pointer type with its unspecialized version (e.g.,
NSArray *).
llvm-svn: 241543
Objective-C type arguments can be provided in angle brackets following
an Objective-C interface type. Syntactically, this is the same
position as one would provide protocol qualifiers (e.g.,
id<NSCopying>), so parse both together and let Sema sort out the
ambiguous cases. This applies both when parsing types and when parsing
the superclass of an Objective-C class, which can now be a specialized
type (e.g., NSMutableArray<T> inherits from NSArray<T>).
Check Objective-C type arguments against the type parameters of the
corresponding class. Verify the length of the type argument list and
that each type argument satisfies the corresponding bound.
Specializations of parameterized Objective-C classes are represented
in the type system as distinct types. Both specialized types (e.g.,
NSArray<NSString *> *) and unspecialized types (NSArray *) are
represented, separately.
llvm-svn: 241542
Produce type parameter declarations for Objective-C type parameters,
and attach lists of type parameters to Objective-C classes,
categories, forward declarations, and extensions as
appropriate. Perform semantic analysis of type bounds for type
parameters, both in isolation and across classes/categories/extensions
to ensure consistency.
Also handle (de-)serialization of Objective-C type parameter lists,
along with sundry other things one must do to add a new declaration to
Clang.
Note that Objective-C type parameters are typedef name declarations,
like typedefs and C++11 type aliases, in support of type erasure.
Part of rdar://problem/6294649.
llvm-svn: 241541
Objective-C format strings now support modifier flags
that can be attached to a '@' conversion. Currently
the only one supported, as of iOS 9 and OS X 10.11,
is the new "technical term", denoted by the flag "tt",
for example:
%[tt]@
instead of just:
%@
The 'tt' stands for "technical term", which is used
by the string-localization facilities on Darwin to
add the appropriate spacing or quotation depending
the language locale.
Implements <rdar://problem/20374720>.
llvm-svn: 241243
Addresses a conflict with glibc's __nonnull macro by renaming the type
nullability qualifiers as follows:
__nonnull -> _Nonnull
__nullable -> _Nullable
__null_unspecified -> _Null_unspecified
This is the major part of rdar://problem/21530726, but does not yet
provide the Darwin-specific behavior for the old names.
llvm-svn: 240596
These usually apply to the return type. At one point this was necessary to
get some of them to apply to the entire block, but it appears that's working
anyway (see block-return.c).
rdar://problem/20468034
llvm-svn: 240189
...instead of as a special case in ParseObjCTypeName with lots of
duplicated logic. Besides being a nice refactoring, this also allows
"- (instancetype __nonnull)self" in addition to "- (nonnull instancetype)self".
rdar://problem/19924646
llvm-svn: 240188
Includes a simple static analyzer check and not much else, but we'll also
be able to take advantage of this in Swift.
This feature can be tested for using __has_feature(cf_returns_on_parameters).
This commit also contains two fixes:
- Look through non-typedef sugar when deciding whether something is a CF type.
- When (cf|ns)_returns(_not)?_retained is applied to invalid properties,
refer to "property" instead of "method" in the error message.
rdar://problem/18742441
llvm-svn: 240185
Introduce the clang pragmas "assume_nonnull begin" and "assume_nonnull
end" in which we make default assumptions about the nullability of many
unannotated pointers:
- Single-level pointers are inferred to __nonnull
- NSError** in a (function or method) parameter list is inferred to
NSError * __nullable * __nullable.
- CFErrorRef * in a (function or method) parameter list is inferred
to CFErrorRef __nullable * __nullable.
- Other multi-level pointers are never inferred to anything.
Implements rdar://problem/19191042.
llvm-svn: 240156
'null_resettable' properties are those whose getters return nonnull
but whose setters take nil, to "reset" the property to some
default. Implements rdar://problem/19051334.
llvm-svn: 240155
Introduce context-sensitive, non-underscored nullability specifiers
(nonnull, nullable, null_unspecified) for Objective-C method return
types, method parameter types, and properties.
Introduce Objective-C-specific semantics, including computation of the
nullability of the result of a message send, merging of nullability
information from the @interface of a class into its @implementation,
etc .
This is the Objective-C part of rdar://problem/18868820.
llvm-svn: 240154
This generalizes the checking of null arguments to also work with
values of pointer-to-function, reference-to-function, and block
pointer type, using the nullability information within the underling
function prototype to extend non-null checking, and diagnoses returns
of 'nil' within a function with a __nonnull return type.
Note that we don't warn about nil returns from Objective-C methods,
because it's common for Objective-C methods to mimic the nil-swallowing
behavior of the receiver by checking ostensibly non-null parameters
and returning nil from otherwise non-null methods in that
case.
It also diagnoses (via a separate flag) conversions from nullable to
nonnull pointers. It's a separate flag because this warning can be noisy.
llvm-svn: 240153
Introduces the type specifiers __nonnull, __nullable, and
__null_unspecified that describe the nullability of the pointer type
to which the specifier appertains. Nullability type specifiers improve
on the existing nonnull attributes in a few ways:
- They apply to types, so one can represent a pointer to a non-null
pointer, use them in function pointer types, etc.
- As type specifiers, they are syntactically more lightweight than
__attribute__s or [[attribute]]s.
- They can express both the notion of 'should never be null' and
also 'it makes sense for this to be null', and therefore can more
easily catch errors of omission where one forgot to annotate the
nullability of a particular pointer (this will come in a subsequent
patch).
Nullability type specifiers are maintained as type sugar, and
therefore have no effect on mangling, encoding, overloading,
etc. Nonetheless, they will be used for warnings about, e.g., passing
'null' to a method that does not accept it.
This is the C/C++ part of rdar://problem/18868820.
llvm-svn: 240146
in the context of the container itself.
Otherwise we will emit 'unavailable' errors when referencing an unavailable super class
even though the subclass is also marked 'unavailable'.
rdar://20598702
llvm-svn: 235276
attribute to be placed on Objective-C pointer typedef
to make them strong enough so on their "new" method
family no attempt is made to override these
types. rdar://20255473
llvm-svn: 235128
"multiple methods named '<selector>' found" warning by noting
the method that is actualy used. It also cleans up and refactors
code in this area and selects a method that matches actual arguments
in case of receiver being a forward class object.
rdar://19265430
llvm-svn: 235023
Previously, many error messages would simply be "read-only variable is not
assignable" This change provides more information about why the variable is
not assignable, as well as note to where the const is located.
Differential Revision: http://reviews.llvm.org/D4479
llvm-svn: 234677
This warns when using decls that are not available on all deployment targets.
For example, a call to
- (void)ppartialMethod __attribute__((availability(macosx,introduced=10.8)));
will warn if -mmacosx-version-min is set to less than 10.8.
To silence the warning, one has to explicitly redeclare the method like so:
@interface Whatever(MountainLionAPI)
- (void)ppartialMethod;
@end
This way, one cannot accidentally call a function that isn't available
everywhere. Having to add the redeclaration will hopefully remind the user
to add an explicit respondsToSelector: call as well.
Some projects build against old SDKs to get this effect, but building against
old SDKs suppresses some bug fixes -- see http://crbug.com/463171 for examples.
The hope is that SDK headers are annotated well enough with availability
attributes that new SDK + this warning offers the same amount of protection
as using an old SDK.
llvm-svn: 232750
override where at least a declaration of a designated initializer is in a super
class and not necessarily in the current class. rdar://19653785.
llvm-svn: 231700