The macinfo support was broken for LTO situations, by terminating
macinfo lists only once - multiple macinfo contributions were correctly
labeled, but they all continued/flowed into later contributions until
only one terminator appeared at the end of the section.
Correctly terminate each contribution & fix the parsing to handle this
situation too. The parsing fix is also necessary for dumping linked
binaries - the previous code would stop at the end of the first
contribution - missing all later contributions in a linked binary.
It'd be nice to improve the dumping to print the offsets of each
contribution so it'd be easier to know which CU AT_macro_info refers to
which macinfo contribution.
In DWARF v5 the Line Number Program Header is extensible, allowing values with
new content types. In this extension a content type is added,
DW_LNCT_LLVM_source, which contains the embedded source code of the file.
Add new optional attribute for !DIFile IR metadata called source which contains
source text. Use this to output the source to the DWARF line table of code
objects. Analogously extend METADATA_FILE in Bitcode and .file directive in ASM
to support optional source.
Teach llvm-dwarfdump and llvm-objdump about the new values. Update the output
format of llvm-dwarfdump to make room for the new attribute on file_names
entries, and support embedded sources for the -source option in llvm-objdump.
Differential Revision: https://reviews.llvm.org/D42765
llvm-svn: 325970
Consistent with GCC and addresses a shortcoming with ThinLTO where many
imported CUs may end up being empty (because the functions imported from
them either ended up not being used (and were then discarded, since
they're imported as available_externally) or optimized away entirely).
Test cases previously testing empty CUs (either intentionally, or
because they didn't need anything more complicated) had a trivial 'int'
or similar basic type added to their retained types list.
This is a first order approximation - a deeper implementation could do
things like:
1) Be more lazy about construction of the CU - for example if two CUs
containing a single identical retained type are linked together, with
this change one of the two CUs will be produced but empty (since a
duplicate type won't be produced).
2) Go further and invert all the CU links the same way the subprogram
link is inverted - keep named CU lists of retained types, macros, etc,
and have those link back to the CU. Then if they're emitted, the CU is
emitted, but never otherwise - this would allow the metadata itself to
be dropped earlier too, though it seems unlikely that's an important
optimization as there shouldn't be many CUs relative to the number of
other entities.
llvm-svn: 304020
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.
Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.
Motivation
----------
Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.
We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.
Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.
http://reviews.llvm.org/D19034
<rdar://problem/25256815>
llvm-svn: 266446