Append this to the existing target-features attribute on the function.
Some flags ignore existing attributes, and some overwrite them. Move
towards consistently respecting existing attributes if present. Since
target features act as a state machine on their own, append to the
function attribute. The backend default added feature list, function
attributes, and -mattr will all be appended together, and the later
features can individually toggle the earlier settings.
When tail duplication estimates a size of tail it uses instruction
count. Account for a number of instrictions in a bundle too.
Differential Revision: https://reviews.llvm.org/D72783
After extracting, fix up debug info in both the old and new functions by
1) Pointing line locations and debug intrinsics to the new subprogram
scope, and
2) Deleting intrinsics which point to values outside of the new
function.
Depends on https://reviews.llvm.org/D72795.
Testing: check-llvm, check-clang, a build of LNT in the `-Os -g` config
with "-mllvm -hot-cold-split=1" set, and end-to-end debugging of a toy
program which undergoes splitting to verify that lldb can find
variables, single step, etc. in extracted code.
rdar://45507940
Differential Revision: https://reviews.llvm.org/D72801
This does produce slightly different code. Now a unique IMPLICIT_DEF
is emitted for each of the implicit_def operands, rather than reusing
the same one.
This now develops the same problem G_ZEXT/G_ANYEXT have where the
requested type is assumed to be the source type. This will be fixed
separately by creating intermediate merges.
This reverts D53469, which changed llvm's DWARF emission to emit
DW_AT_call_return_pc as a function-local offset. Such an encoding is not
compatible with post-link block re-ordering tools and isn't standards-
compliant.
In addition to reverting back to the original DW_AT_call_return_pc
encoding, teach lldb how to fix up DW_AT_call_return_pc when the address
comes from an object file pointed-to by a debug map. While doing this I
noticed that lldb's support for tail calls that cross a DSO/object file
boundary wasn't covered, so I added tests for that. This latter case
exercises the newly added return PC fixup.
The dsymutil changes in this patch were originally included in D49887:
the associated test should be sufficient to test DW_AT_call_return_pc
encoding purely on the llvm side.
Differential Revision: https://reviews.llvm.org/D72489
I believe the generated code here can suffer from double rounding.
So I wanted to capture the existing codegen so we can make
decisions about how to fix it.
I noticed one bot failure due to
24a00ef240 because the wildcard matching
was not working as intended, fixed it to act similar to other checks of
CGSCCToFunctionPassAdaptor.
This patch imports constant variables even when they can't be internalized
(which results in promotion). This offers some extra constant folding
opportunities.
Differential revision: https://reviews.llvm.org/D70404
Summary:
Current peeling implementation bails out in case of loop nests.
The patch introduces a field in TargetTransformInfo structure that
certain targets can use to relax the constraints if it's
profitable (disabled by default).
Also additional option is added to enable peeling manually for
experimenting and testing purposes.
Reviewers: fhahn, lebedev.ri, xbolva00
Reviewed By: xbolva00
Subscribers: xbolva00, hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D70304
As discussed in the motivating PR44509:
https://bugs.llvm.org/show_bug.cgi?id=44509
...we can end up with worse code using fast-math than without.
This is because the reassociate pass greedily transforms fsub
into fneg/fadd and apparently (based on the regression tests
seen here) expects instcombine to clean that up if it wasn't
profitable. But we were missing this fold:
(X - Y) - Z --> X - (Y + Z)
There's another, more specific case that I think we should
handle as shown in the "fake" fneg test (but missed with a real
fneg), but that's another patch. That may be tricky to get
right without conflicting with existing transforms for fneg.
Differential Revision: https://reviews.llvm.org/D72521
Summary:
This patch implements `formatv()` formatting for `dwarf::LineNumberOps`
and makes use of it for the `llvm-dwarfdump --debug-line` dump.
Previously, unknown line number standard opcodes would lead to undefined
behaviour. The code would attempt to format the data pointer of an empty
`StringRef` (a null pointer) using `%s`. According to the description
for `format()`, use of that interface carries the "risk of `printf`".
Passing a null pointer in place of an array to a C library function
results in undefined behaviour.
Reviewers: jhenderson, daltenty, stevewan
Reviewed By: jhenderson
Subscribers: aprantl, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72369
After recent changes (D71872) in yaml2obj, it is possible so cleanup
testing of the SHT_RELR sections.
Differential revision: https://reviews.llvm.org/D71874
This restores 2af97be802 (reverted at
6288f86e87), with all the fixes I had
applied at the time, along with a new fix for non-determinism in the
ordering of a couple of passes due to being accessed as parameters on
the same call.
I've also added --dump-input=fail to the new tests so I can more
thoroughly fix any additional failures.
Bitcast only really applies between scalars and vectors. Implement as
an unmerge and remerge. The test needs to tolerate failure since one
of the unmerges currently fails to legalize.
The 16 bank LDS case is complicated due to using multiple
instructions. If I attempt to write a pattern for it, the generated
selector incorrectly places the copy to m0 after the first
instruction, so that needs to be separately addressed.
Also fix not gluing the copy to m0 to the second operation in the
second half of the 16 bank lowering.
Summary: Use an `i` constraint in the test, to correctly trigger the code for
handling the `z` constraint modifier.
Reviewers: asb, lenary, jrtc27
Reviewed By: lenary, jrtc27
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72134
These intrinsics and the corresponding ISD nodes were recently added. PPC has
instructions that do this for vectors. Legalize them and add patterns to emit
the satuarting instructions.
Differential revision: https://reviews.llvm.org/D71940
These intrinsics expand to a variable number of instructions so just like in
ISelLowering.cpp we use custom code to deal with them.
Committing Tim's original patch.
Differential Revision: https://reviews.llvm.org/D65656
----
Breaks EXPENSIVE_CHECKS builds.
if users don't specific -mattr, the default target-feature come
from IR attribute.
Reviewers: lenary, asb
Reviewed By: lenary, asb
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70837
The encoded sequence of Elf*_Relr entries in a SHT_RELR section looks
like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
i.e. start with an address, followed by any number of bitmaps. The address
entry encodes 1 relocation. The subsequent bitmap entries encode up to 63(31)
relocations each, at subsequent offsets following the last address entry.
More information is here:
https://github.com/llvm-mirror/llvm/blob/master/lib/Object/ELF.cpp#L272
This patch adds a support for these sections.
Differential revision: https://reviews.llvm.org/D71872
The current implementation of skip insertion (SIInsertSkip) makes it a
mandatory pass required for correctness. Initially, the idea was to
have an optional pass. This patch inserts the s_cbranch_execz upfront
during SILowerControlFlow to skip over the sections of code when no
lanes are active. Later, SIRemoveShortExecBranches removes the skips
for short branches, unless there is a sideeffect and the skip branch is
really necessary.
This new pass will replace the handling of skip insertion in the
existing SIInsertSkip Pass.
Differential revision: https://reviews.llvm.org/D68092
Summary:
This patch implements minimal VE code generation for empty function bodies (no args, no value return).
Contents
* empty function code generation test.
* Minimal function prologue & epilogue emission
* Instruction formats and instruction definitions as far as required for the empty function prologue & epilogue.
* I64 register class definitions.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D72598
We were performing an emulated i32->f64 in the SSE registers, then
storing that value to memory and doing a extload into the X87
domain.
After this patch we'll now just store the i32 to memory along
with an i32 0. Then do a 64-bit FILD to f80 completely in the X87
unit. This matches what we do without SSE.
The mve-phireg.ll test no longer really tests what it was added for,
but the original case was fairly complex. I've left the test in as a
general codegen test.
Summary:
This patch introduces `AAValueConstantRange`, which answers a possible range for integer value in a specific program point.
One of the motivations is propagating existing `range` metadata. (I think we need to change the situation that `range` metadata cannot be put to Argument).
The state is a tuple of `ConstantRange` and it is initialized to (known, assumed) = ([-∞, +∞], empty).
Currently, AAValueConstantRange is created in `getAssumedConstant` method when `AAValueSimplify` returns `nullptr`(worst state).
Supported
- BinaryOperator(add, sub, ...)
- CmpInst(icmp eq, ...)
- !range metadata
`AAValueConstantRange` is not intended to extend to polyhedral range value analysis.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: phosek, davezarzycki, baziotis, hiraditya, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71620
This flag was originally part of D70157, but was removed as we carved away pieces of the review. Since we have the nop support checked in, and it appears mature(*), I think it's time to add the master flag. For now, it will default to nop padding, but once the prefix padding support lands, we'll update the defaults.
(*) I can now confirm that downstream testing of the changes which have landed to date - nop padding and compiler support for suppressions - is passing all of the functional testing we've thrown at it. There might still be something lurking, but we've gotten enough coverage to be confident of the basic approach.
Note that the new flag can be used either when assembling an .s file, or when using the integrated assembler directly from the compiler. The later will use all of the suppression mechanism and should always generate correct code. We don't yet have assembly syntax for the suppressions, so passing this directly to the assembler w/a raw .s file may result in broken code. Use at your own risk.
Also note that this isn't the wiring for the clang option. I think the most recent review for that is D72227, but I've lost track, so that might be off.
Differential Revision: https://reviews.llvm.org/D72738
Pass small FP values in GPRs or stack memory according the the normal
convention. This is what gcc -mno-sse does on Win64.
I adjusted the conditions under which we emit an error to check if the
argument or return value would be passed in an XMM register when SSE is
disabled. This has a side effect of no longer emitting an error for FP
arguments marked 'inreg' when targetting x86 with SSE disabled. Our
calling convention logic was already assigning it to FP0/FP1, and then
we emitted this error. That seems unnecessary, we can ignore 'inreg' and
compile it without SSE.
Reviewers: jyknight, aemerson
Differential Revision: https://reviews.llvm.org/D70465
This allows us to generate better code for selecting the fixup
to load.
Previously when the sign was set we had to load offset 0. And
when it was clear we had to load offset 4. This required a testl,
setns, zero extend, and finally a mul by 4. By switching the offsets
we can just shift the sign bit into the lsb and multiply it by 4.
Summary:
- `dead-mi-elimination` assumes MIR in the SSA form and cannot be
arranged after phi elimination or DeSSA. It's enhanced to handle the
dead register definition by skipping use check on it. Once a register
def is `dead`, all its uses, if any, should be `undef`.
- Re-arrange the DIE in RA phase for AMDGPU by placing it directly after
`detect-dead-lanes`.
- Many relevant tests are refined due to different register assignment.
Reviewers: rampitec, qcolombet, sunfish
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72709
These intrinsics expand to a variable number of instructions so just like in
ISelLowering.cpp we use custom code to deal with them.
Committing Tim's original patch.
Differential Revision: https://reviews.llvm.org/D65656
When multiple guard intrinsics are merged into one, currently the
result of eraseInstFromFunction() is returned -- however, this
should only be done if the current instruction is being removed.
In this case we're removing a different instruction and should
instead report that the current one has been modified by returning it.
For this test case, this reduces the number of instcombine iterations
from 5 to 2 (the minimum possible).
Differential Revision: https://reviews.llvm.org/D72558
This ports the MergeFunctions pass to the NewPM. This was rather
straightforward, as no analyses are used.
Additionally MergeFunctions needs to be conditionally enabled in
the PassBuilder, but I left that part out of this patch.
Differential Revision: https://reviews.llvm.org/D72537
This fixes the issue encountered in D71164. Instead of using a
range-based for, manually iterate over the users and advance the
iterator beforehand, so we do not skip any users due to iterator
invalidation.
Differential Revision: https://reviews.llvm.org/D72657
Summary:
Mem op clustering adds a weak edge in the DAG between two loads or
stores that should be clustered, but the direction of this edge is
pretty arbitrary (it depends on the sort order of MemOpInfo, which
represents the operands of a load or store). This often means that two
loads or stores will get reordered even if they would naturally have
been scheduled together anyway, which leads to test case churn and goes
against the scheduler's "do no harm" philosophy.
The fix makes sure that the direction of the edge always matches the
original code order of the instructions.
Reviewers: atrick, MatzeB, arsenm, rampitec, t.p.northover
Subscribers: jvesely, wdng, nhaehnle, kristof.beyls, hiraditya, javed.absar, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72706