Commit Graph

1391 Commits

Author SHA1 Message Date
Michael Kuperstein 46b131e3f8 [CGP] Split some critical edges coming out of indirect branches
Splitting critical edges when one of the source edges is an indirectbr
is hard in general (because it requires changing the memory the indirectbr
reads). But if a block only has a single indirectbr predecessor (which is
the common case), we can simulate splitting that edge by splitting
the destination block, and retargeting the *direct* branches.

This is motivated by the use of computed gotos in python 2.7: PyEval_EvalFrame()
ends up using an indirect branch with ~100 successors, and passing a constant to
each of those. Since MachineSink can't break indirect critical edges on demand
(and doing this in MIR doesn't look feasible), this causes us to emit about ~100
defs of registers containing constants, which we in the predecessor block, where
only one of those constants is used in each successor. So, at each computed goto,
we needlessly spill about a 100 constants to stack. The end result is that a
clang-compiled python interpreter can be about ~2.5x slower on a simple python
reduction loop than a gcc-compiled interpreter.

Differential Revision: https://reviews.llvm.org/D29916

llvm-svn: 296149
2017-02-24 18:41:32 +00:00
Nemanja Ivanovic 195c5452d3 [PowerPC] Use subfic instruction for subtract from immediate
Provide a 64-bit pattern to use SUBFIC for subtracting from a 16-bit immediate.
The corresponding pattern already exists for 32-bit integers.

Committing on behalf of Hiroshi Inoue.

Differential Revision: https://reviews.llvm.org/D29387

llvm-svn: 296144
2017-02-24 18:16:06 +00:00
Nemanja Ivanovic 82d53ed492 [PowerPC] Use rldicr instruction for AND with an immediate if possible
Emit clrrdi (extended mnemonic for rldicr) for AND-ing with masks that
clear bits from the right hand size.

Committing on behalf of Hiroshi Inoue.

Differential Revision: https://reviews.llvm.org/D29388

llvm-svn: 296143
2017-02-24 18:03:16 +00:00
Sanjay Patel 832b1622d8 [DAGCombiner] add missing folds for scalar select of {-1,0,1}
The motivation for filling out these select-of-constants cases goes back to D24480, 
where we discussed removing an IR fold from add(zext) --> select. And that goes back to:
https://reviews.llvm.org/rL75531
https://reviews.llvm.org/rL159230

The idea is that we should always canonicalize patterns like this to a select-of-constants 
in IR because that's the smallest IR and the best for value tracking. Note that we currently 
do the opposite in some cases (like the cases in *this* patch). Ie, the proposed folds in 
this patch already exist in InstCombine today:
https://github.com/llvm-mirror/llvm/blob/master/lib/Transforms/InstCombine/InstCombineSelect.cpp#L1151

As this patch shows, most targets generate better machine code for simple ext/add/not ops 
rather than a select of constants. So the follow-up steps to make this less of a patchwork 
of special-case folds and missing IR canonicalization:

1. Have DAGCombiner convert any select of constants into ext/add/not ops.
2  Have InstCombine canonicalize in the other direction (create more selects).

Differential Revision: https://reviews.llvm.org/D30180

llvm-svn: 296137
2017-02-24 17:17:33 +00:00
Michael Kuperstein 581c9f4b20 Revert r269060 to pacify bots.
llvm-svn: 296064
2017-02-24 01:22:19 +00:00
Michael Kuperstein 12e79d5002 [CGP] Split some critical edges coming out of indirect branches
Splitting critical edges when one of the source edges is an indirectbr
is hard in general (because it requires changing the memory the indirectbr
reads). But if a block only has a single indirectbr predecessor (which is
the common case), we can simulate splitting that edge by splitting
the destination block, and retargeting the *direct* branches.

This is motivated by the use of computed gotos in python 2.7: PyEval_EvalFrame()
ends up using an indirect branch with ~100 successors, and passing a constant to
each of those. Since MachineSink can't break indirect critical edges on demand
(and doing this in MIR doesn't look feasible), this causes us to emit about ~100
defs of registers containing constants, which we in the predecessor block, where
only one of those constants is used in each successor. So, at each computed goto,
we needlessly spill about a 100 constants to stack. The end result is that a
clang-compiled python interpreter can be about ~2.5x slower on a simple python
reduction loop than a gcc-compiled interpreter.

Differential Revision: https://reviews.llvm.org/D29916

llvm-svn: 296060
2017-02-24 00:56:21 +00:00
Bill Seurer 8e48f416ad [DAGCombiner] revert r295336
r295336 causes a bootstrapped clang to fail for many compilations on
powerpc BE.  See 
http://lab.llvm.org:8011/builders/clang-ppc64be-linux-multistage/builds/2315
for example.

Reverting as per the developer's request.

llvm-svn: 295849
2017-02-22 16:27:33 +00:00
Sanjay Patel f2a345c8ee [PowerPC] add tests for select-of-constants; NFC
llvm-svn: 295460
2017-02-17 16:43:43 +00:00
Artur Pilipenko 85d758299e [DAGCombiner] Support {a|s}ext, {a|z|s}ext load nodes in load combine
Resubmit -r295314 with PowerPC and AMDGPU tests updated.

Support {a|s}ext, {a|z|s}ext load nodes as a part of load combine patters.

Reviewed By: filcab

Differential Revision: https://reviews.llvm.org/D29591

llvm-svn: 295336
2017-02-16 17:07:27 +00:00
Kyle Butt 7fbec9bdf1 Codegen: Make chains from trellis-shaped CFGs
Lay out trellis-shaped CFGs optimally.
A trellis of the shape below:

  A     B
  |\   /|
  | \ / |
  |  X  |
  | / \ |
  |/   \|
  C     D

would be laid out A; B->C ; D by the current layout algorithm. Now we identify
trellises and lay them out either A->C; B->D or A->D; B->C. This scales with an
increasing number of predecessors. A trellis is a a group of 2 or more
predecessor blocks that all have the same successors.

because of this we can tail duplicate to extend existing trellises.

As an example consider the following CFG:

    B   D   F   H
   / \ / \ / \ / \
  A---C---E---G---Ret

Where A,C,E,G are all small (Currently 2 instructions).

The CFG preserving layout is then A,B,C,D,E,F,G,H,Ret.

The current code will copy C into B, E into D and G into F and yield the layout
A,C,B(C),E,D(E),F(G),G,H,ret

define void @straight_test(i32 %tag) {
entry:
  br label %test1
test1: ; A
  %tagbit1 = and i32 %tag, 1
  %tagbit1eq0 = icmp eq i32 %tagbit1, 0
  br i1 %tagbit1eq0, label %test2, label %optional1
optional1: ; B
  call void @a()
  br label %test2
test2: ; C
  %tagbit2 = and i32 %tag, 2
  %tagbit2eq0 = icmp eq i32 %tagbit2, 0
  br i1 %tagbit2eq0, label %test3, label %optional2
optional2: ; D
  call void @b()
  br label %test3
test3: ; E
  %tagbit3 = and i32 %tag, 4
  %tagbit3eq0 = icmp eq i32 %tagbit3, 0
  br i1 %tagbit3eq0, label %test4, label %optional3
optional3: ; F
  call void @c()
  br label %test4
test4: ; G
  %tagbit4 = and i32 %tag, 8
  %tagbit4eq0 = icmp eq i32 %tagbit4, 0
  br i1 %tagbit4eq0, label %exit, label %optional4
optional4: ; H
  call void @d()
  br label %exit
exit:
  ret void
}

here is the layout after D27742:
straight_test:                          # @straight_test
; ... Prologue elided
; BB#0:                                 # %entry ; A (merged with test1)
; ... More prologue elided
	mr 30, 3
	andi. 3, 30, 1
	bc 12, 1, .LBB0_2
; BB#1:                                 # %test2 ; C
	rlwinm. 3, 30, 0, 30, 30
	beq	 0, .LBB0_3
	b .LBB0_4
.LBB0_2:                                # %optional1 ; B (copy of C)
	bl a
	nop
	rlwinm. 3, 30, 0, 30, 30
	bne	 0, .LBB0_4
.LBB0_3:                                # %test3 ; E
	rlwinm. 3, 30, 0, 29, 29
	beq	 0, .LBB0_5
	b .LBB0_6
.LBB0_4:                                # %optional2 ; D (copy of E)
	bl b
	nop
	rlwinm. 3, 30, 0, 29, 29
	bne	 0, .LBB0_6
.LBB0_5:                                # %test4 ; G
	rlwinm. 3, 30, 0, 28, 28
	beq	 0, .LBB0_8
	b .LBB0_7
.LBB0_6:                                # %optional3 ; F (copy of G)
	bl c
	nop
	rlwinm. 3, 30, 0, 28, 28
	beq	 0, .LBB0_8
.LBB0_7:                                # %optional4 ; H
	bl d
	nop
.LBB0_8:                                # %exit ; Ret
	ld 30, 96(1)                    # 8-byte Folded Reload
	addi 1, 1, 112
	ld 0, 16(1)
	mtlr 0
	blr

The tail-duplication has produced some benefit, but it has also produced a
trellis which is not laid out optimally. With this patch, we improve the layouts
of such trellises, and decrease the cost calculation for tail-duplication
accordingly.

This patch produces the layout A,C,E,G,B,D,F,H,Ret. This layout does have
back edges, which is a negative, but it has a bigger compensating
positive, which is that it handles the case where there are long strings
of skipped blocks much better than the original layout. Both layouts
handle runs of executed blocks equally well. Branch prediction also
improves if there is any correlation between subsequent optional blocks.

Here is the resulting concrete layout:

straight_test:                          # @straight_test
; BB#0:                                 # %entry ; A (merged with test1)
	mr 30, 3
	andi. 3, 30, 1
	bc 12, 1, .LBB0_4
; BB#1:                                 # %test2 ; C
	rlwinm. 3, 30, 0, 30, 30
	bne	 0, .LBB0_5
.LBB0_2:                                # %test3 ; E
	rlwinm. 3, 30, 0, 29, 29
	bne	 0, .LBB0_6
.LBB0_3:                                # %test4 ; G
	rlwinm. 3, 30, 0, 28, 28
	bne	 0, .LBB0_7
	b .LBB0_8
.LBB0_4:                                # %optional1 ; B (Copy of C)
	bl a
	nop
	rlwinm. 3, 30, 0, 30, 30
	beq	 0, .LBB0_2
.LBB0_5:                                # %optional2 ; D (Copy of E)
	bl b
	nop
	rlwinm. 3, 30, 0, 29, 29
	beq	 0, .LBB0_3
.LBB0_6:                                # %optional3 ; F (Copy of G)
	bl c
	nop
	rlwinm. 3, 30, 0, 28, 28
	beq	 0, .LBB0_8
.LBB0_7:                                # %optional4 ; H
	bl d
	nop
.LBB0_8:                                # %exit

Differential Revision: https://reviews.llvm.org/D28522

llvm-svn: 295223
2017-02-15 19:49:14 +00:00
Amaury Sechet 9df26d330f Fix typo in test filename. NFC
llvm-svn: 294860
2017-02-11 17:48:49 +00:00
Amaury Sechet 887117fb3d Add test case for pr31890. NFC
llvm-svn: 294455
2017-02-08 14:35:48 +00:00
Nemanja Ivanovic 17aeb5a260 [PowerPC][Altivec] Add vnot extended mnemonic
Adds the vnot extended mnemonic for the vnor instruction.

Committing on behalf of brunoalr (Bruno Rosa).

Differential Revision: https://reviews.llvm.org/D29225

llvm-svn: 294330
2017-02-07 18:57:29 +00:00
Sanne Wouda 57b63d6ade [LLC] Add an inline assembly diagnostics handler.
Summary:
llc would hit a fatal error for errors in inline assembly. The
diagnostics message is now printed.

Reviewers: rengolin, MatzeB, javed.absar, anemet

Reviewed By: anemet

Subscribers: jyknight, nemanjai, llvm-commits

Differential Revision: https://reviews.llvm.org/D29408

llvm-svn: 293999
2017-02-03 11:14:39 +00:00
Nirav Dave 93f9d5ce04 Revert "In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled."
This reverts commit r293893 which is miscompiling lua on ARM and
bootstrapping for x86-windows.

llvm-svn: 293915
2017-02-02 18:24:55 +00:00
Nirav Dave 4442667fc5 In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled.
Recommiting after fixing X86 inc/dec chain bug.

    * Simplify Consecutive Merge Store Candidate Search

    Now that address aliasing is much less conservative, push through
    simplified store merging search and chain alias analysis which only
    checks for parallel stores through the chain subgraph. This is cleaner
    as the separation of non-interfering loads/stores from the
    store-merging logic.

    When merging stores search up the chain through a single load, and
    finds all possible stores by looking down from through a load and a
    TokenFactor to all stores visited.

    This improves the quality of the output SelectionDAG and the output
    Codegen (save perhaps for some ARM cases where we correctly constructs
    wider loads, but then promotes them to float operations which appear
    but requires more expensive constant generation).

    Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)

    Additional Minor Changes:

      1. Finishes removing unused AliasLoad code

      2. Unifies the chain aggregation in the merged stores across code
         paths

      3. Re-add the Store node to the worklist after calling
         SimplifyDemandedBits.

      4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
         arbitrary, but seems sufficient to not cause regressions in
         tests.

      5. Remove Chain dependencies of Memory operations on CopyfromReg
         nodes as these are captured by data dependence

      6. Forward loads-store values through tokenfactors containing
          {CopyToReg,CopyFromReg} Values.

      7. Peephole to convert buildvector of extract_vector_elt to
         extract_subvector if possible (see
         CodeGen/AArch64/store-merge.ll)

      8. Store merging for the ARM target is restricted to 32-bit as
         some in some contexts invalid 64-bit operations are being
         generated. This can be removed once appropriate checks are
         added.

    This finishes the change Matt Arsenault started in r246307 and
    jyknight's original patch.

    Many tests required some changes as memory operations are now
    reorderable, improving load-store forwarding. One test in
    particular is worth noting:

      CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
      forwarding converts a load-store pair into a parallel store and
      a memory-realized bitcast of the same value. However, because we
      lose the sharing of the explicit and implicit store values we
      must create another local store. A similar transformation
      happens before SelectionDAG as well.

    Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle

llvm-svn: 293893
2017-02-02 14:39:42 +00:00
Kit Barton d26978796e [PowerPC] Fix sjlj pseduo instructions to use G8RC_NOX0 register class
The the following instructions:
  - LD/LWZ (expanded from sjLj pseudo-instructions)
  - LXVL/LXVLL vector loads
  - STXVL/STXVLL vector stores
all require G8RC_NO0X class registers for RA.

Differential Revision: https://reviews.llvm.org/D29289

Committed for Lei Huang

llvm-svn: 293769
2017-02-01 14:33:57 +00:00
Kyle Butt b15c06677c CodeGen: Allow small copyable blocks to "break" the CFG.
When choosing the best successor for a block, ordinarily we would have preferred
a block that preserves the CFG unless there is a strong probability the other
direction. For small blocks that can be duplicated we now skip that requirement
as well, subject to some simple frequency calculations.

Differential Revision: https://reviews.llvm.org/D28583

llvm-svn: 293716
2017-01-31 23:48:32 +00:00
Nicolai Haehnle 8813d5d221 [DAGCombine] require UnsafeFPMath for re-association of addition
Summary:
The affected transforms all implicitly use associativity of addition,
for which we usually require unsafe math to be enabled.

The "Aggressive" flag is only meant to convey information about the
performance of the fused ops relative to a fmul+fadd sequence.

Fixes Bug 31626.

Reviewers: spatel, hfinkel, mehdi_amini, arsenm, tstellarAMD

Subscribers: jholewinski, nemanjai, wdng, llvm-commits

Differential Revision: https://reviews.llvm.org/D28675

llvm-svn: 293635
2017-01-31 14:35:37 +00:00
Nemanja Ivanovic 2f2a6ab991 [PowerPC][Altivec] Add vmr extended mnemonic
Just adds the vmr (Vector Move Register) mnemonic for the VOR instruction in
the PPC back end.

Committing on behalf of brunoalr (Bruno Rosa).

Differential Revision: https://reviews.llvm.org/D29133

llvm-svn: 293626
2017-01-31 13:43:11 +00:00
Sean Fertile 3c8c385a77 [PPC] cleanup of mayLoad/mayStore flags and memory operands.
1) Explicitly sets mayLoad/mayStore property in the tablegen files on load/store
   instructions.
2) Updated the flags on a number of intrinsics indicating that they write
    memory.
3) Added SDNPMemOperand flags for some target dependent SDNodes so that they
   propagate their memory operand

Review: https://reviews.llvm.org/D28818
llvm-svn: 293200
2017-01-26 18:59:15 +00:00
Nirav Dave d32a421f75 Revert "In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled."
This reverts commit r293184 which is failing in LTO builds

llvm-svn: 293188
2017-01-26 16:46:13 +00:00
Nirav Dave de6516c466 In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled.
* Simplify Consecutive Merge Store Candidate Search

    Now that address aliasing is much less conservative, push through
    simplified store merging search and chain alias analysis which only
    checks for parallel stores through the chain subgraph. This is cleaner
    as the separation of non-interfering loads/stores from the
    store-merging logic.

    When merging stores search up the chain through a single load, and
    finds all possible stores by looking down from through a load and a
    TokenFactor to all stores visited.

    This improves the quality of the output SelectionDAG and the output
    Codegen (save perhaps for some ARM cases where we correctly constructs
    wider loads, but then promotes them to float operations which appear
    but requires more expensive constant generation).

    Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)

    Additional Minor Changes:

      1. Finishes removing unused AliasLoad code

      2. Unifies the chain aggregation in the merged stores across code
         paths

      3. Re-add the Store node to the worklist after calling
         SimplifyDemandedBits.

      4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
         arbitrary, but seems sufficient to not cause regressions in
         tests.

      5. Remove Chain dependencies of Memory operations on CopyfromReg
         nodes as these are captured by data dependence

      6. Forward loads-store values through tokenfactors containing
          {CopyToReg,CopyFromReg} Values.

      7. Peephole to convert buildvector of extract_vector_elt to
         extract_subvector if possible (see
         CodeGen/AArch64/store-merge.ll)

      8. Store merging for the ARM target is restricted to 32-bit as
         some in some contexts invalid 64-bit operations are being
         generated. This can be removed once appropriate checks are
         added.

    This finishes the change Matt Arsenault started in r246307 and
    jyknight's original patch.

    Many tests required some changes as memory operations are now
    reorderable, improving load-store forwarding. One test in
    particular is worth noting:

      CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
      forwarding converts a load-store pair into a parallel store and
      a memory-realized bitcast of the same value. However, because we
      lose the sharing of the explicit and implicit store values we
      must create another local store. A similar transformation
      happens before SelectionDAG as well.

    Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle

llvm-svn: 293184
2017-01-26 16:02:24 +00:00
Rafael Espindola 82149a1aa9 Use shouldAssumeDSOLocal in classifyGlobalReference.
And teach shouldAssumeDSOLocal that ppc has no copy relocations.

The resulting code handle a few more case than before. For example, it
knows that a weak symbol can be resolved to another .o file, but it
will still be in the main executable.

llvm-svn: 293180
2017-01-26 15:02:31 +00:00
Tim Shen fd1e5aa8df [APFloat] Switch from (PPCDoubleDoubleImpl, IEEEdouble) layout to (IEEEdouble, IEEEdouble)
Summary:
This patch changes the layout of DoubleAPFloat, and adjust all
operations to do either:
1) (IEEEdouble, IEEEdouble) -> (uint64_t, uint64_t) -> PPCDoubleDoubleImpl,
   then run the old algorithm.
2) Do the right thing directly.

1) includes multiply, divide, remainder, mod, fusedMultiplyAdd, roundToIntegral,
   convertFromString, next, convertToInteger, convertFromAPInt,
   convertFromSignExtendedInteger, convertFromZeroExtendedInteger,
   convertToHexString, toString, getExactInverse.
2) includes makeZero, makeLargest, makeSmallest, makeSmallestNormalized,
   compare, bitwiseIsEqual, bitcastToAPInt, isDenormal, isSmallest,
   isLargest, isInteger, ilogb, scalbn, frexp, hash_value, Profile.

I could split this into two patches, e.g. use
1) for all operatoins first, then incrementally change some of them to
2). I didn't do that, because 1) involves code that converts data between
PPCDoubleDoubleImpl and (IEEEdouble, IEEEdouble) back and forth, and may
pessimize the compiler. Instead, I find easy functions and use
approach 2) for them directly.

Next step is to implement move multiply and divide from 1) to 2). I don't
have plans for other functions in 1).

Differential Revision: https://reviews.llvm.org/D27872

llvm-svn: 292839
2017-01-23 22:39:35 +00:00
Benjamin Kramer db9e0b659d Fix some broken CHECK lines.
The colon is important.

llvm-svn: 292761
2017-01-22 20:28:56 +00:00
Tony Jiang 8e8c444d3d [PowerPC] Expand ISEL instruction into if-then-else sequence.
Generally, the ISEL is expanded into if-then-else sequence, in some
cases (like when the destination register is the same with the true
or false value register), it may just be expanded into just the if
or else sequence.

llvm-svn: 292154
2017-01-16 20:12:26 +00:00
Tony Jiang 8da139a9fd Revert "[PowerPC] Expand ISEL instruction into if-then-else sequence."
This reverts commit 1d0e0374438ca6e153844c683826ba9b82486bb1.

llvm-svn: 292131
2017-01-16 15:01:07 +00:00
Tony Jiang 7630b8c5ee [PowerPC] Expand ISEL instruction into if-then-else sequence.
Generally, the ISEL is expanded into if-then-else sequence, in some
cases (like when the destination register is the same with the true
or false value register), it may just be expanded into just the if
or else sequence.

llvm-svn: 292128
2017-01-16 14:43:12 +00:00
Kyle Butt efe56fed12 Revert "CodeGen: Allow small copyable blocks to "break" the CFG."
This reverts commit ada6595a526d71df04988eb0a4b4fe84df398ded.

This needs a simple probability check because there are some cases where it is
not profitable.

llvm-svn: 291695
2017-01-11 19:55:19 +00:00
Justin Lebar 7d81813d76 [TM] Restore default TargetOptions in TargetMachine::resetTargetOptions.
Summary:
Previously if you had

 * a function with the fast-math-enabled attr, followed by
 * a function without the fast-math attr,

the second function would inherit the first function's fast-math-ness.

This means that mixing fast-math and non-fast-math functions in a module
was completely broken unless you explicitly annotated every
non-fast-math function with "unsafe-fp-math"="false".  This appears to
have been broken since r176986 (March 2013), when the resetTargetOptions
function was introduced.

This patch tests the correct behavior as best we can.  I don't think I
can test FPDenormalMode and NoTrappingFPMath, because they aren't used
in any backends during function lowering.  Surprisingly, I also can't
find any uses at all of LessPreciseFPMAD affecting generated code.

The NVPTX/fast-math.ll test changes are an expected result of fixing
this bug.  When FMA is disabled, we emit add as "add.rn.f32", which
prevents fma combining.  Before this patch, fast-math was enabled in all
functions following the one which explicitly enabled it on itself, so we
were emitting plain "add.f32" where we should have generated
"add.rn.f32".

Reviewers: mkuper

Subscribers: hfinkel, majnemer, jholewinski, nemanjai, llvm-commits

Differential Revision: https://reviews.llvm.org/D28507

llvm-svn: 291618
2017-01-10 23:43:04 +00:00
Kyle Butt df27aa8c89 CodeGen: Allow small copyable blocks to "break" the CFG.
When choosing the best successor for a block, ordinarily we would have preferred
a block that preserves the CFG unless there is a strong probability the other
direction. For small blocks that can be duplicated we now skip that requirement
as well.

Differential revision: https://reviews.llvm.org/D27742

llvm-svn: 291609
2017-01-10 23:04:30 +00:00
Matt Arsenault 0b382a7cb8 DAG: Avoid OOB when legalizing vector indexing
If a vector index is out of bounds, the result is supposed to be
undefined but is not undefined behavior. Change the legalization
for indexing the vector on the stack so that an out of bounds
index does not create an out of bounds memory access.

llvm-svn: 291604
2017-01-10 22:02:30 +00:00
Tim Shen 5480eb8445 [Legalizer] Fix fp-to-uint to fp-tosint promotion assertion.
Summary:
When promoting fp-to-uint16 to fp-to-sint32, the result is actually zero
extended. For example, given double 65534.0, without legalization:

  fp-to-uint16: 65534.0 -> 0xfffe

With the legalization:

  fp-to-sint32: 65534.0 -> 0x0000fffe

Without this patch, legalization wrongly emits a signed extend assertion,
which is consumed by later icmp instruction, and cause miscompile.

Note that the floating point value must be in [0, 65535), otherwise the
behavior is undefined.

This patch reverts r279223 behavior and adds more tests and
documentations.

In PR29041's context, James Molloy mentioned that:

  We don't need to mask because conversion from float->uint8_t is
  undefined if the integer part of the float value is not representable in
  uint8_t. Therefore we can assume this doesn't happen!

which is totally true and good, because fptoui is documented clearly to
have undefined behavior when overflow/underflow happens. We should take
the advantage of this behavior so that we can save unnecessary mask
instructions.

Reviewers: jmolloy, nadav, echristo, kbarton

Subscribers: mehdi_amini, nemanjai, llvm-commits

Differential Revision: https://reviews.llvm.org/D28284

llvm-svn: 291015
2017-01-04 22:11:42 +00:00
Hal Finkel b2f951d87a [PowerPC] Fix logic dealing with nop after calls (and tail-call eligibility)
This change aims to unify and correct our logic for when we need to allow for
the possibility of the linker adding a TOC restoration instruction after a
call. This comes up in two contexts:

 1. When determining tail-call eligibility. If we make a tail call (i.e.
    directly branch to a function) then there is no place for the linker to add
    a TOC restoration.
 2. When determining when we need to add a nop instruction after a call.
    Likewise, if there is a possibility that the linker might need to add a
    TOC restoration after a call, then we need to put a nop after the call
    (the bl instruction).

First problem: We were using similar, but different, logic to decide (1) and
(2). This is just wrong. Both the resideInSameModule function (used when
determining tail-call eligibility) and the isLocalCall function (used when
deciding if the post-call nop is needed) were supposed to be determining the
same underlying fact (i.e. might a TOC restoration be needed after the call).
The same logic should be used in both places.

Second problem: The logic in both places was wrong. We only know that two
functions will share the same TOC when both functions come from the same
section of the same object. Otherwise the linker might cause the functions to
use different TOC base addresses (unless the multi-TOC linker option is
disabled, in which case only shared-library boundaries are relevant). There are
a number of factors that can cause functions to be placed in different sections
or come from different objects (-ffunction-sections, explicitly-specified
section names, COMDAT, weak linkage, etc.). All of these need to be checked.
The existing logic only checked properties of the callee, but the properties of
the caller must also be checked (for example, calling from a function in a
COMDAT section means calling between sections).

There was a conceptual error in the resideInSameModule function in that it
allowed tail calls to functions with weak linkage and protected/hidden
visibility. While protected/hidden visibility does prevent the function
implementation from being replaced at runtime (via interposition), it does not
prevent the linker from using an alternate implementation at link time (i.e.
using some strong definition to replace the provided weak one during linking).
If this happens, then we're still potentially looking at a required TOC
restoration upon return.

Otherwise, in general, the post-call nop is needed wherever ELF interposition
needs to be supported. We don't currently support ELF interposition at the IR
level (see http://lists.llvm.org/pipermail/llvm-dev/2016-November/107625.html
for more information), and I don't think we should try to make it appear to
work in the backend in spite of that fact. Unfortunately, because of the way
that the ABI works, we need to generate code as if we supported interposition
whenever the linker might insert stubs for the purpose of supporting it.

Differential Revision: https://reviews.llvm.org/D27231

llvm-svn: 291003
2017-01-04 21:05:13 +00:00
Tim Shen 53ddc1d0f4 [PowerPC] Add ppc support to update_llc_test_checks.py, and ppc tests. NFC.
Reviewers: chandlerc, hfinkel, echristo, iteratee

Subscribers: mehdi_amini, nemanjai, llvm-commits

Differential Revision: https://reviews.llvm.org/D28036

llvm-svn: 290370
2016-12-22 20:59:39 +00:00
Adrian Prantl 1eadba1c8c Renumber testcase metadata nodes after r290153.
This patch renumbers the metadata nodes in debug info testcases after
https://reviews.llvm.org/D26769. This is a separate patch because it
causes so much churn. This was implemented with a python script that
pipes the testcases through llvm-as - | llvm-dis - and then goes
through the original and new output side-by side to insert all
comments at a close-enough location.

Differential Revision: https://reviews.llvm.org/D27765

llvm-svn: 290292
2016-12-22 00:45:21 +00:00
Adrian Prantl bceaaa9643 [IR] Remove the DIExpression field from DIGlobalVariable.
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.

Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:

(1) The DIGlobalVariable should describe the source level variable,
    not how to get to its location.

(2) It makes it unsafe/hard to update the expressions when we call
    replaceExpression on the DIGLobalVariable.

(3) It makes it impossible to represent a global variable that is in
    more than one location (e.g., a variable with multiple
    DW_OP_LLVM_fragment-s).  We also moved away from attaching the
    DIExpression to DILocalVariable for the same reasons.

This reapplies r289902 with additional testcase upgrades and a change
to the Bitcode record for DIGlobalVariable, that makes upgrading the
old format unambiguous also for variables without DIExpressions.

<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769

llvm-svn: 290153
2016-12-20 02:09:43 +00:00
Adrian Prantl 73ec065604 Revert "[IR] Remove the DIExpression field from DIGlobalVariable."
This reverts commit 289920 (again).
I forgot to implement a Bitcode upgrade for the case where a DIGlobalVariable
has not DIExpression. Unfortunately it is not possible to safely upgrade
these variables without adding a flag to the bitcode record indicating which
version they are.
My plan of record is to roll the planned follow-up patch that adds a
unit: field to DIGlobalVariable into this patch before recomitting.
This way we only need one Bitcode upgrade for both changes (with a
version flag in the bitcode record to safely distinguish the record
formats).

Sorry for the churn!

llvm-svn: 289982
2016-12-16 19:39:01 +00:00
Chandler Carruth 05e80d31bd Revert r289638: [PowerPC] Fix logic dealing with nop after calls (and tail-call eligibility)
This patch appears to result in trampolines in vtables being miscompiled
when they in turn tail call a method.

I've posted some preliminary details about the failure on the thread for
this commit and talked to Hal. He was comfortable going ahead and
reverting until we sort out what is wrong.

llvm-svn: 289928
2016-12-16 07:31:20 +00:00
Adrian Prantl 74a835cda0 [IR] Remove the DIExpression field from DIGlobalVariable.
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.

Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:

(1) The DIGlobalVariable should describe the source level variable,
    not how to get to its location.

(2) It makes it unsafe/hard to update the expressions when we call
    replaceExpression on the DIGLobalVariable.

(3) It makes it impossible to represent a global variable that is in
    more than one location (e.g., a variable with multiple
    DW_OP_LLVM_fragment-s).  We also moved away from attaching the
    DIExpression to DILocalVariable for the same reasons.

This reapplies r289902 with additional testcase upgrades.

<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769

llvm-svn: 289920
2016-12-16 04:25:54 +00:00
Adrian Prantl 03c6d31a3b Revert "[IR] Remove the DIExpression field from DIGlobalVariable."
This reverts commit 289902 while investigating bot berakage.

llvm-svn: 289906
2016-12-16 01:00:30 +00:00
Adrian Prantl ce13935776 [IR] Remove the DIExpression field from DIGlobalVariable.
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.

Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:

(1) The DIGlobalVariable should describe the source level variable,
    not how to get to its location.

(2) It makes it unsafe/hard to update the expressions when we call
    replaceExpression on the DIGLobalVariable.

(3) It makes it impossible to represent a global variable that is in
    more than one location (e.g., a variable with multiple
    DW_OP_LLVM_fragment-s).  We also moved away from attaching the
    DIExpression to DILocalVariable for the same reasons.

<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769

llvm-svn: 289902
2016-12-16 00:36:43 +00:00
Ehsan Amiri 741b387563 [PPC] corrections in two testcases
Removing sensitivity to scheduling (by using CHECK-DAG instead of CHECK) and
some other minor corrections.

In preparation to commit Power9 processor model.

llvm-svn: 289900
2016-12-16 00:33:07 +00:00
Ehsan Amiri 1aa3ef9268 [PPC] Use CHECK-DAG instead of CHECK in the testcase
This test is currently sensitive to scheduling. Using CHECK-DAG allows us to
preserve the main purpose of the test and remove this sensivity.

In preparation to commit Power9 processor model.

llvm-svn: 289869
2016-12-15 20:51:09 +00:00
Nemanja Ivanovic 552c8e960e [Power9] Allow AnyExt immediates for XXSPLTIB
In some situations, the BUILD_VECTOR node that builds a v18i8 vector by
a splat of an i8 constant will end up with signed 8-bit values and other
situations, it'll end up with unsigned ones. Handle both situations.

Fixes PR31340.

llvm-svn: 289804
2016-12-15 11:16:20 +00:00
Joerg Sonnenberger 400e7b7811 Use PIC relocation model as default for PowerPC64 ELF.
Most of the PowerPC64 code generation for the ELF ABI is already PIC.
There are four main exceptions:
(1) Constant pointer arrays etc. should in writeable sections.
(2) The TOC restoration NOP after a call is needed for all global
symbols. While GNU ld has a workaround for questionable GCC self-calls,
we trigger the checks for calls from COMDAT sections as they cross input
sections and are therefore not considered self-calls. The current
decision is questionable and suboptimal, but outside the scope of the
change.
(3) TLS access can not use the initial-exec model.
(4) Jump tables should use relative addresses. Note that the current
encoding doesn't work for the large code model, but it is more compact
than the default for any non-trivial jump table. Improving this is again
beyond the scope of this change.

At least (1) and (3) are assumptions made in target-independent code and
introducing additional hooks is a bit messy. Testing with clang shows
that a -fPIC binary is 600KB smaller than the corresponding -fno-pic
build. Separate testing from improved jump table encodings would explain
only about 100KB or so. The rest is expected to be a result of more
aggressive immediate forming for -fno-pic, where the -fPIC binary just
uses TOC entries.

This change brings the LLVM output in line with the GCC output, other
PPC64 compilers like XLC on AIX are known to produce PIC by default
as well. The relocation model can still be provided explicitly, i.e.
when using MCJIT.

One test case for case (1) is included, other test cases with relocation
mode sensitive behavior are wired to static for now. They will be
reviewed and adjusted separately.

Differential Revision: https://reviews.llvm.org/D26566

llvm-svn: 289743
2016-12-15 00:01:53 +00:00
Nirav Dave f5bf03c7ef Revert "In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled."
Reverting due to ARM MCJIT and MIPS LLD error.

This reverts commit r289659.

llvm-svn: 289667
2016-12-14 16:43:44 +00:00
Nirav Dave 8527ab0ad2 In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled.
Retrying after fixing after removing load-store factoring through
token factors in favor of improved token factor operand pruning

Simplify Consecutive Merge Store Candidate Search

Now that address aliasing is much less conservative, push through
simplified store merging search which only checks for parallel stores
through the chain subgraph. This is cleaner as the separation of
non-interfering loads/stores from the store-merging logic.

Whem merging stores, search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited. This improves the quality of the
output SelectionDAG and generally the output CodeGen (with some
exceptions).

Additional Minor Changes:

   1. Finishes removing unused AliasLoad code
   2. Unifies the the chain aggregation in the merged stores across
      code paths
   3. Re-add the Store node to the worklist after calling
      SimplifyDemandedBits.
   4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
      arbitrary, but seemed sufficient to not cause regressions in
      tests.

This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.

Many tests required some changes as memory operations are now
reorderable. Some tests relying on the order were changed to use
volatile memory operations

Noteworthy tests:

    CodeGen/AArch64/argument-blocks.ll -
      It's not entirely clear what the test_varargs_stackalign test is
      supposed to be asserting, but the new code looks right.

    CodeGen/AArch64/arm64-memset-inline.lli -
    CodeGen/AArch64/arm64-stur.ll -
    CodeGen/ARM/memset-inline.ll -

      The backend now generates *worse* code due to store merging
      succeeding, as we do do a 16-byte constant-zero store efficiently.

    CodeGen/AArch64/merge-store.ll -
      Improved, but there still seems to be an extraneous vector insert
      from an element to itself?

    CodeGen/PowerPC/ppc64-align-long-double.ll -
      Worse code emitted in this case, due to the improved store->load
      forwarding.

    CodeGen/X86/dag-merge-fast-accesses.ll -
    CodeGen/X86/MergeConsecutiveStores.ll -
    CodeGen/X86/stores-merging.ll -
    CodeGen/Mips/load-store-left-right.ll -
      Restored correct merging of non-aligned stores

    CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll -
      Improved. Correctly merges buffer_store_dword calls

    CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll -
      Improved. Sidesteps loading a stored value and
      merges two stores

    CodeGen/X86/pr18023.ll -
      This test has been removed, as it was asserting incorrect
      behavior. Non-volatile stores *CAN* be moved past volatile loads,
      and now are.

    CodeGen/X86/vector-idiv.ll -
    CodeGen/X86/vector-lzcnt-128.ll -
      It's basically impossible to tell what these tests are actually
      testing. But, looks like the code got better due to the memory
      operations being recognized as non-aliasing.

    CodeGen/X86/win32-eh.ll -
      Both loads of the securitycookie are now merged.

Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle

Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, dsanders, resistor, tstellarAMD, t.p.northover, spatel

Differential Revision: https://reviews.llvm.org/D14834

llvm-svn: 289659
2016-12-14 15:44:26 +00:00
Hal Finkel 065b756528 [PowerPC] Fix logic dealing with nop after calls (and tail-call eligibility)
This change aims to unify and correct our logic for when we need to allow for
the possibility of the linker adding a TOC restoration instruction after a
call. This comes up in two contexts:

 1. When determining tail-call eligibility. If we make a tail call (i.e.
    directly branch to a function) then there is no place for the linker to add
    a TOC restoration.
 2. When determining when we need to add a nop instruction after a call.
    Likewise, if there is a possibility that the linker might need to add a
    TOC restoration after a call, then we need to put a nop after the call
    (the bl instruction).

First problem: We were using similar, but different, logic to decide (1) and
(2). This is just wrong. Both the resideInSameModule function (used when
determining tail-call eligibility) and the isLocalCall function (used when
deciding if the post-call nop is needed) were supposed to be determining the
same underlying fact (i.e. might a TOC restoration be needed after the call).
The same logic should be used in both places.

Second problem: The logic in both places was wrong. We only know that two
functions will share the same TOC when both functions come from the same
section of the same object. Otherwise the linker might cause the functions to
use different TOC base addresses (unless the multi-TOC linker option is
disabled, in which case only shared-library boundaries are relevant). There are
a number of factors that can cause functions to be placed in different sections
or come from different objects (-ffunction-sections, explicitly-specified
section names, COMDAT, weak linkage, etc.). All of these need to be checked.
The existing logic only checked properties of the callee, but the properties of
the caller must also be checked (for example, calling from a function in a
COMDAT section means calling between sections).

There was a conceptual error in the resideInSameModule function in that it
allowed tail calls to functions with weak linkage and protected/hidden
visibility. While protected/hidden visibility does prevent the function
implementation from being replaced at runtime (via interposition), it does not
prevent the linker from using an alternate implementation at link time (i.e.
using some strong definition to replace the provided weak one during linking).
If this happens, then we're still potentially looking at a required TOC
restoration upon return.

Otherwise, in general, the post-call nop is needed wherever ELF interposition
needs to be supported. We don't currently support ELF interposition at the IR
level (see http://lists.llvm.org/pipermail/llvm-dev/2016-November/107625.html
for more information), and I don't think we should try to make it appear to
work in the backend in spite of that fact. This will yield subtle bugs if
interposition is attempted. As a result, regardless of whether we're in PIC
mode, we don't assume that we need to add the nop to support the possibility of
ELF interposition. However, the necessary check is in place (i.e. calling
GV->isInterposable and TM.shouldAssumeDSOLocal) so when we have functions for
which interposition is allowed at the IR level, we'll add the nop as necessary.
In the mean time, we'll generate more tail calls and fewer nops when compiling
position-independent code.

Differential Revision: https://reviews.llvm.org/D27231

llvm-svn: 289638
2016-12-14 07:24:50 +00:00