Most builtins date from before the "cmpxchg weak" was a gleam in the
C++ committee's eye, so fortunately not much needs to change. But a
few of them *do* acknowledge that failure is possible.
For these, we'll emit the usual cartesian product of cmpxchg
operations if we can't statically determine weakness. CodeGen can
sort it out later if the function gets inlined.
The only other non-trivial aspect of this is (I think) that we emit
the scalar expression for "IsWeak" once, at the beginning, and
propagate its value through the successive blocks. There's not much in
it, but it's slightly more consistent with the existing handling of
FailureOrder.
llvm-svn: 210932
Init-order and use-after-return modes can currently be enabled
by runtime flags. use-after-scope mode is not really working at the
moment.
The only problem I see is that users won't be able to disable extra
instrumentation for init-order and use-after-scope by a top-level Clang flag.
But this instrumentation was implicitly enabled for quite a while and
we didn't hear from users hurt by it.
llvm-svn: 210924
This is a minimal fix for clang. I'll soon add support for generating
weak variants when requested, but that's not really necessary for the
LLVM change in isolation.
llvm-svn: 210907
The vec_sld and vec_vsldoi interfaces perform a left-shift on vector
arguments for both big and little endian. However, because they rely
on the vec_perm interface which is endian-dependent, the permutation
vector needs to be reversed for LE to get the proper shift direction.
I've added some extra testing for these interfaces for LE in the
builtins-ppc-altivec.c.
llvm-svn: 210657
Instructions from __nodebug__ functions don't have file:line
information even when inlined into no-nodebug functions. As a result,
intrinsics (SSE and other) from <*intrin.h> clang headers _never_
have file:line information.
With this change, an instruction without !dbg metadata gets one from
the call instruction when inlined.
Fixes PR19001.
llvm-svn: 210459
The PowerPC vsumsws instruction, accessed via vec_sums, is defined
architecturally with a big-endian bias, in that the second input vector
and the result always reference big-endian element 3 (little-endian
element 0). For ease of porting, the programmer wants elements 3 in
both cases.
To provide this semantics, for little endian we generate a permute for
the second input vector prior to the vsumsws instruction, and generate
a permute for the result vector following the vsumsws instruction.
The correctness of this code is tested by the new sums.c test added in
a previous patch, as well as the modifications to
builtins-ppc-altivec.c in the present patch.
llvm-svn: 210449
This uncovered something strange. Diagnostics for InlineAsm have source locations
that don't really map to where they are within the .c source file.
llvm-svn: 210440
The PowerPC vector-unpack-high and vector-unpack-low instructions
are defined architecturally with a big-endian bias, in that the vector
element numbering is assumed to be "left to right" regardless of
whether the processor is in big-endian or little-endian mode. This
effectively reverses the meaning of "high" and "low." Such a
definition is unnatural for little-endian code generation.
To facilitate ease of porting, the vec_unpackh and vec_unpackl
interfaces are designed to use natural element ordering, so that
elements are numbered according to little-endian design principles
when code is generated for a little-endian target. The desired
semantics can be achieved by using the opposite instruction for
little-endian mode. That is, when a call to vec_unpackh appears in
the code, a vector-unpack-low is generated, and when a call to
vec_unpackl appears in the code, a vector-unpack-high is generated.
The correctness of this code is tested by the new unpack.c test
added in a previous patch, as well as the modifications to
builtins-ppc-altivec.c in the present patch.
Note that these interfaces were originally incorrectly implemented
when they take a vector pixel argument. This patch corrects this
implementation for both big- and little-endian code generation.
llvm-svn: 210391
Commit r210384 prematurely included changes to the little-endian
implementation of the vec_sum2s interface. This patch modifies
test/CodeGen/builtins-ppc-altivec.c to test those changes.
llvm-svn: 210389
The Altivec builtin test case test/CodeGen/builtins-ppc-altivec.c has
always been executed only for 32-bit PowerPC. These tests are equally
valid for 64-bit PowerPC. This patch updates the test to be run for
three targets: powerpc-unknown-unknown, powerpc64-unknown-unknown,
and powerpc64le-unknown-unknown. The expected code generation changes
for some of the Altivec builtins for little endian, so this patch adds
new CHECK-LE variants to the test for the powerpc64le target.
These tests satisfy the testing requirements for some previous patches
committed over the last couple of days for lib/Headers/altivec.h:
r210279 for vec_perm, r210337 for vec_mul[eo], and r210340 for
vec_pack.
llvm-svn: 210384
This patch adds support for pointer types in global named registers variables.
It'll be lowered as a pair of read/write_register and inttoptr/ptrtoint calls.
Also adds some early checks on types on SemaDecl to avoid the assert.
Tests changed accordingly. (PR19837)
llvm-svn: 210274
These intrinsics are special because they directly take a memory operand (AVX2
adds the register counterparts). Typically, other non-memop intrinsics take
registers and then it's left to isel to fold memory operands.
In order to LICM intrinsics directly reading memory, we require that no stores
are in the loop (LICM) or that the folded load accesses constant memory
(MachineLICM). When neither is the case we fail to hoist a loop-invariant
broadcast.
We can work around this limitation if we expose the load as a regular load and
then just implement the broadcast using the vector initializer syntax. This
exposes the load to LICM and other optimizations.
At the IR level this is translated into a series of insertelements. The
sequence is already recognized as a broadcast so there is no impact on the
quality of codegen.
_mm256_broadcast_pd and _mm256_broadcast_ps are not updated by this patch
because right now we lack the DAG-combiner smartness to recover the broadcast
instructions. This will be tackled in a follow-on.
There will be completing changes on the LLVM side to remove the LLVM
intrinsics and to auto-upgrade bitcode files.
Fixes <rdar://problem/16494520>
llvm-svn: 209846
Clang knows about the sanitizer blacklist and it makes no sense to
add global to the list of llvm.asan.dynamically_initialized_globals if it
will be blacklisted in the instrumentation pass anyway. Instead, we should
do as much blacklisting as possible (if not all) in the frontend.
llvm-svn: 209789
I opened a discussion on cfe-commits. Ideally we've got a few things
that need to happen. CompilerRT should probably have blacklists tests.
Asan should probably not depend on that specific field.
llvm-svn: 209766
That small change, although it looked harmless, it made emitting the LValue
on the PHI node without the proper cast. Reverting it fixes PR19841.
llvm-svn: 209663
A few (mostly CodeGen) parts of Clang were tightly coupled to the
AArch64 backend. Now that it's gone, they will not even compile.
I've also deduplicated RUN lines in many of the AArch64 tests. This
might improve "make check-all" time noticably: some of those NEON
tests were monsters.
llvm-svn: 209578
I forgot to fix this one in r209145. We use these flags on dllimport tests
to make sure we emit code for available_externaly functions and don't inline
the IR.
llvm-svn: 209564
Summary:
Previously, you could not specify the original file name when passing a preprocessed file into the compiler
Now you can use 'clang -Xclang -main-file-name -Xclang <original file name> ...'
Or 'clang -cc1 -main-file-name <original file name> ...'
llvm-svn: 209503
This is a testcase for r209227, a change in LLVM that automatically sets
visibility to default when the linkage is changed to local (rather than
asserting).
What this testcase triggers is hard to reproduce otherwise: the
`GlobalValue` is created (with non-local linkage), the visibility is set
to hidden, and then the linkage is set to local.
PR19760
llvm-svn: 209228
This is a GNU attribute that causes calls within the attributed function
to be inlined where possible. It is implemented by giving such calls the
alwaysinline attribute.
Differential Revision: http://reviews.llvm.org/D3816
llvm-svn: 209217
behavior on mismatch. The AutoUpgrader will drop incompatible debug info
any way and also emit a warning diagnostic for it.
rdar://problem/16926122
llvm-svn: 209182
This is a GNU attribute that allows split stacks to be turned off on a
per-function basis.
Differential Revision: http://reviews.llvm.org/D3817
llvm-svn: 209167
This patch implements global named registers in Clang, lowering to the just
created intrinsics in LLVM (@llvm.read/write_register). A new type of LValue
had to be created (Register), which just adds support to carry the metadata
node containing the name of the register. Two new methods to emit loads and
stores interoperate with another to emit the named metadata node.
No guarantees are being made and only non-allocatable global variable named
registers are being supported. Local named register support is unchanged.
llvm-svn: 209149
When we were padding a struct to avoid splitting it between registers and
the stack, we were throwing away the type which the argument should be coerced
to.
llvm-svn: 209122
Now that llvm cannot represent alias cycles, we have to diagnose erros just
before trying to close the cycle. This degrades the errors a bit. The real
solution is what it was before: if we want to provide good errors for these
cases, we have to be able to find a clang level decl given a mangled name
and produce the error from Sema.
llvm-svn: 209008
This looks like the right way for this check to work, but there is
another semi-obvious bug, I would think: why is CurLoc not zero'd out
between functions? The possibility for it to bleed between them seems
problematic. (& indeed I caused tests to fail when I fixed this a
different way, by setting CurLoc to SourceLocation() and the end of
EmitFunctionEnd... )
The changes to debug-info-blocks.m are due to a mismatch between the
source manager's file naming and CGDebugInfo's default handling when no
-main-file-name is specified. This actually reveals somewhat of a bug in
the debug info when using source files from standard in, too. See the
comment in CGDebugInfo::CreateCompileUnit for more details.
llvm-svn: 208742
Summary:
Most of the clang header patch by Simon Pilgrim @ SCEE.
Also fixed (or added) clang tests for these intrinsics.
LLVM tests to make sure we get the blend instruction out of these
shufflevectors are at http://reviews.llvm.org/D3600
Reviewers: eli.friedman, craig.topper, rafael
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D3601
llvm-svn: 208664
Add ARM support for dllexport and dllimport attributes. This is a relatively
conservative change. The alternative is to entirely drop the architecture
requirement. The dllimport and dllexport attributes are not restricted to any
architecture, simply to platforms that support this attribute (currently
Windows).
llvm-svn: 208486
This is the clang counterpart to 208413, which ensures that Homogeneous
Floating-point Aggregates are passed in consecutive registers on ARM.
llvm-svn: 208417
Previously we calculated the shift amount based upon DataLayout::getTypeAllocSizeInBits.
This will only work for legal types - types such as i24 that are created as part of
structs for bitfields will return "32" from that function. Change to using
getTypeSizeInBits.
It turns out that AArch64 didn't run across this problem because it always returned
[1 x i64] as the type for a bitfield, whereas ARM64 returns i64 so goes down this
(better, but wrong) codepath.
llvm-svn: 208231
In cases where a struct must, according to the AAPCS, not be split between
general purpose and floating point registers, we use
ABIArgInfo::getExpandWithPadding to add the padding arguments. However,
ExpandWithPadding does not work if the struct contains bitfields, so we
instead must use ABIArgInfo::getDirect.
llvm-svn: 208185
Reverting r208106 to reapply r208065 with a fix for the regression. The
issue was that the enum tried to be built even if the declaration hadn't
been constructed for debug info - presenting problems for enum templates
and typedefs of enums with names for linkage purposes.
Original commit message:
This regressed a little further 208055 though it was already a little
broken.
While the requiresCompleteType optimization should be implemented here.
Future (possibly near future) work.
llvm-svn: 208114
This regressed a little further 208055 though it was already a little
broken.
While the requiresCompleteType optimization should be implemented here.
Future (possibly near future) work.
llvm-svn: 208065
Add support for the remaining hints from the ACLE. Although __dbg is listed as
a hint, it is handled different, so it is not covered by this change.
llvm-svn: 207930
The __yield intrinsic generates a hint instruction to indicate that the thread
is not performing any useful operations at the moment. This is for
compatibility with MSVC, although, the intrinsic is also part of the ACLE, and
is enabled globally as a result.
llvm-svn: 207275
We never aka vector types because our attributed syntax for it is less
comprehensible than the typedefs. This leaves the user in the dark when
the typedef isn't named that well.
Example:
v2s v; v4f w;
w = v;
The naming in this cases isn't even that bad, but the error we give is
useless without looking up the actual typedefs.
t.c:6:5: error: assigning to 'v4f' from incompatible type 'v2s'
Now:
t.c:6:5: error: assigning to 'v4f' (vector of 4 'float' values) from
incompatible type 'v2s' (vector of 2 'int' values)
We do this for all diagnostics that print a vector type.
llvm-svn: 207267
This patch:
1. Adds a definition for two new GCCBuiltins in BuiltinsX86.def:
__builtin_ia32_rdtsc;
__builtin_ia32_rdtscp;
2. Replaces the already existing definition of intrinsic __rdtsc in
ia32intrin.h with a simple call to the new GCC builtin __builtin_ia32_rdtsc.
3. Adds a definition for the new intrinsic __rdtscp in ia32intrin.h
llvm-svn: 207132
Summary: The condition in the base class is rather strange. It says a target has the 128-bit integer type if the size of a pointer is >= 64-bits. N32 has 32-bit pointers but 64-bit integers. I'm a bit reluctant to change this for all targets so this patch makes the method virtual and overrides it for MIPS64.
Reviewers: atanasyan
Reviewed By: atanasyan
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3472
llvm-svn: 207121
Unlike the standard AAPCS64 ABI, variadic arguments are always passed on the
stack with the Darwin ABI, and this was not being considered when deciding
whether to expand HFA/HVA arguments in a call. An HFA argument with a "float"
base type was being expanded into separate "float" arguments, each of which
was then extended to a double, resulting in a serious mismatch from what is
expected by the va_arg implementation. <rdar://problem/15777067>
llvm-svn: 206729
The frontend option -fno-optimize-sibling-calls resolves to -cc1's
-mdisable-tail-calls, which is passed to the TargetMachine in the
backend. PassManagerBuilder was adding the -tailcallelim pass anyway.
Use a new DisableTailCalls option in PassManagerBuilder to disable tail
calls harder.
Requires the matching commit in LLVM that adds DisableTailCalls.
<rdar://problem/16050591>
llvm-svn: 206543
My first attempt to make sure HFAs were contiguous was in the block dealing
with padding registers, which meant it only triggered on the first stack-based
HFA. This should extend it to the rest as well.
Another part of PR19432.
llvm-svn: 206456
This is a partial revert of 183015.
By not recognizing things like _setjmp we lose (returns_twice) attribute on
them, which leads to incorrect code generation.
Fixes PR16138.
llvm-svn: 206362
This implements clause C.8 of the AAPCS in the front-end, so that Clang
accurately knows when the registers run out and it has to insert padding before
the stack objects begin.
PR19432.
llvm-svn: 206296
This patch adds support for the msvc pragmas section, bss_seg, code_seg,
const_seg and data_seg as well as support for __declspec(allocate()).
Additionally it corrects semantics and adds diagnostics for
__attribute__((section())) and the interaction between the attribute
and the msvc pragmas and declspec. In general conflicts should now be
well diganosed within and among these features.
In supporting the pragmas new machinery for uniform lexing for
msvc pragmas was introduced. The new machinery always lexes the
entire pragma and stores it on an annotation token. The parser
is responsible for parsing the pragma when the handling the
annotation token.
There is a known outstanding bug in this implementation in C mode.
Because these attributes and pragmas apply _only_ to definitions, we
process them at the time we detect a definition. Due to tentative
definitions in C, we end up processing the definition late. This means
that in C mode, everything that ends up in a BSS section will end up in
the _last_ BSS section rather than the one that was live at the time of
tentative definition, even if that turns out to be the point of actual
definition. This issue is not known to impact anything as of yet
because we are not aware of a clear use or use case for #pragma bss_seg
but should be fixed at some point.
Differential Revision=http://reviews.llvm.org/D3065#inline-16241
llvm-svn: 205810
Summary:
MSVC always emits inline functions marked with the extern storage class
specifier. The result is something similar to the opposite of
__attribute__((gnu_inline)).
This extension is also available in C.
This fixes PR19264.
Reviewers: rnk, rsmith
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3207
llvm-svn: 205485
This adds support for the various NEON intrinsics used by
aarch64-neon-intrinsics.c (originally written for AArch64) and enables the
test.
My implementations are designed to be semantically correct, the actual code
quality looks like its a wash between the two backends, and is frequently
different (hence the large number of CHECK changes).
llvm-svn: 205210
Really, all tests outside of the Driver tree should use %clang_cc1, but
these are new and easy to fix, and many of them use buitlin headers
which don't work as well without using %clang_cc1.
llvm-svn: 205147
At least on REL6 (Linux/glibc 2.12), the proper symbol for generating gprof
data is _mcount, not mcount. Prior to this change, compiling with -pg would
generate linking errors (because of unresolved references to mcount), after
this change -pg seems at least minimally functional.
llvm-svn: 205144
This adds Clang support for the ARM64 backend. There are definitely
still some rough edges, so please bring up any issues you see with
this patch.
As with the LLVM commit though, we think it'll be more useful for
merging with AArch64 from within the tree.
llvm-svn: 205100
The peculiarities of C99 create scenario where an LLVM IR function
declaration may need to be replaced with a definition baring a different
type because the prototype and definition are not required to agree.
However, we were not properly deferring this when it occurred.
This fixes PR19280.
llvm-svn: 205099
This produces valid IR now that llvm rejects aliases to weak aliases and warns
the user that the resolution is not changed if the weak alias is overridden.
llvm-svn: 204935
When parsing MS inline assembly, we note that fpsw is an implicit def of
most x87 FP operations, and add it to the clobber list. However, we
don't recognize fpsw as a gcc register name, and we assert. Clang
always adds an fpsr clobber, which means the same thing to LLVM, so we
can just use that.
This test case was broken by my LLVM change r196939.
Reviewers: echristo
Differential Revision: http://llvm-reviews.chandlerc.com/D2993
llvm-svn: 204878
This commit fixes a cast instruction assertion failure
due to the incompatible type cast. This will only happen when
the target requires atomic libcalls.
llvm-svn: 204834
COFF doesn't have mergeable sections so LLVM/clang's normal tactics for
string deduplication will not have any effect.
To remedy this we place each string inside it's own section and mark
the section as IMAGE_COMDAT_SELECT_ANY. However, we can only do this if the
string has an external name that we can generate from it's contents.
To be compatible with MSVC, we must use their scheme. Otherwise identical
strings in translation units from clang may not be deduplicated with
translation units in MSVC.
This fixes PR18248.
N.B. We will not attempt to do anything with a string literal which is not of
type 'char' or 'wchar_t' because their compiler does not support unicode
string literals as of this date. Further, we avoid doing this if
either -fwritable-strings or -fsanitize=address are present.
This reverts commit r204596.
llvm-svn: 204675
Use two check-prefix patterns per FileCheck invocation for these tests,
this cleanly removes redundant CHECK directives.
Thanks to Richard Smith for the idea!
llvm-svn: 204587
COFF doesn't have mergeable sections so LLVM/clang's normal tactics for
string deduplication will not have any effect.
To remedy this we place each string inside it's own section and mark
the section as IMAGE_COMDAT_SELECT_ANY. However, we can only do this if the
string has an external name that we can generate from it's contents.
To be compatible with MSVC, we must use their scheme. Otherwise identical
strings in translation units from clang may not be deduplicated with
translation units in MSVC.
This fixes PR18248.
N.B. We will not attempt to do anything with a string literal which is not of
type 'char' or 'wchar_t' because their compiler does not support unicode
string literals as of this date.
llvm-svn: 204562
This makes Clang take advantage of the recent IR addition of a
"failure" memory ordering requirement. As with the "success" ordering,
we try to emit just a single version if the expression is constant,
but fall back to runtime detection (to allow optimisation across
function-call boundaries).
rdar://problem/15996804
llvm-svn: 203837
When a struct has bitfields overlapping with other members
(as required by the AAPCS), clang uses a packed struct to
represent this. If such a struct is large enough for clang to
pass it as a byval pointer (>64 bytes), we need to set the
alignment of the argument to match the original type.
llvm-svn: 203660
This is a conservative check, because it's valid for the expression to be
non-constant, and in cases like that we just don't know whether it's valid.
rdar://problem/16242991
llvm-svn: 203561
These tests are logically related, but they're spread about several
different CodeGen directories. Consolidate them in one place to make
them easier to manage.
llvm-svn: 203541
Summary:
'Expected' should only be modified if the operation fails.
This fixes PR18899.
Reviewers: chandlerc, rsmith, rjmccall
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2922
llvm-svn: 203493
These tests were added before we had settled on using a .profdata extension
for the profile data files. Renaming them now for consistency.
llvm-svn: 203166
In addition, for all functions, use the name from the llvm::Function to
identify the function in the profile data. Compute that "function name",
including the file name for local functions, once when assigning the PGO
counters and store it in the CodeGenPGO class.
Move the code to add InlineHint and Cold attributes out of StartFunction(),
because the "function name" string isn't available at that point.
llvm-svn: 203075
This adds support for the PPC "wc" inline asm constraint (used for allocating
individual CR bits). Support for this constraint type was recently added to the
LLVM PowerPC backend. Although gcc does not currently support allocating
individual CR bits, this identifier choice has been coordinated with the gcc
PowerPC team, and will be marked as reserved for this purpose in the gcc
constraints.md file.
Prior to this change, none of the multi-character PPC constraints were handled
correctly (the '^' escape character was not being added as required by the
parsing code in LLVM). This should now be fixed. I'll add tests for these other
constraints as support is added for them in the backend.
llvm-svn: 202658
When lowering a bitfield, CGRecordLowering would assign the wrong
storage type to a bitfield in some cases and trigger an assertion. In
these cases the layout was still correct, just the bitfield info was
wrong.
llvm-svn: 202562