This broke the following gdb tests:
gdb.base__annota1.exp
gdb.base__consecutive.exp
gdb.python__py-symtab.exp
gdb.reverse__consecutive-precsave.exp
gdb.reverse__consecutive-reverse.exp
I will look into this.
This reverts commit 214162.
llvm-svn: 214163
This allows us to give more precise diagnostics.
Diego kindly tested the impact on debug info size: "The increase on average
debug sizes is 0.1%. The total file size increase is ~0%."
llvm-svn: 214162
While Clang now supports both ELFv1 and ELFv2 ABIs, their use is currently
hard-coded via the target triple: powerpc64-linux is always ELFv1, while
powerpc64le-linux is always ELFv2.
These are of course the most common scenarios, but in principle it is
possible to support the ELFv2 ABI on big-endian or the ELFv1 ABI on
little-endian systems (and GCC does support that), and there are some
special use cases for that (e.g. certain Linux kernel versions could
only be built using ELFv1 on LE).
This patch implements the Clang side of supporting this, based on the
LLVM commit 214072. The command line options -mabi=elfv1 or -mabi=elfv2
select the desired ABI if present. (If not, Clang uses the same default
rules as now.)
Specifically, the patch implements the following changes based on the
presence of the -mabi= option:
In the driver:
- Pass the appropiate -target-abi flag to the back-end
- Select the correct dynamic loader version (/lib64/ld64.so.[12])
In the preprocessor:
- Define _CALL_ELF to the appropriate value (1 or 2)
In the compiler back-end:
- Select the correct ABI in TargetInfo.cpp
- Select the desired ABI for LLVM via feature (elfv1/elfv2)
llvm-svn: 214074
Summary:
This patch extends the __asm parser to make it keep parsing input tokens
as inline assembly if a single-line __asm line is followed by another line
starting with __asm too. It also makes sure that we correctly keep
matching braces in such situations by separating the notions of how many
braces we are matching and whether we are in single-line asm block mode.
Reviewers: rnk
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D4598
llvm-svn: 213916
arm64_be doesn't really exist; it was useful for testing while AArch64 and
ARM64 were separate, but now the only real way to refer to the system is
aarch64_be.
llvm-svn: 213747
In addition to enabling ELFv2 homogeneous aggregate handling,
LLVM support to pass array types directly also enables a performance
enhancement. We can now pass (non-homogeneous) aggregates that fit
fully in registers as direct integer arrays, using an element type
to encode the alignment requirement (that would otherwise go to the
"byval align" field).
This is preferable since "byval" forces the back-end to write the
aggregate out to the stack, even if it could be passed fully in
registers. This is particularly annoying on ELFv2, if there is
no parameter save area available, since we then need to allocate
space on the callee's stack just to hold those aggregates.
Note that to implement this optimization, this patch does not attempt
to fully anticipate register allocation rules as (defined in the
ABI and) implemented in the back-end. Instead, the patch is simply
passing *any* aggregate passed by value using the array mechanism
if its size is up to 64 bytes. This means that some of those will
end up being passed in stack slots anyway, but the generated code
shouldn't be any worse either. (*Large* aggregates remain passed
using "byval" to enable optimized copying via memcpy etc.)
llvm-svn: 213495
This patch implements clang support for the PowerPC ELFv2 ABI.
Together with a series of companion patches in LLVM, this makes
clang/LLVM fully usable on powerpc64le-linux.
Most of the ELFv2 ABI changes are fully implemented on the LLVM side.
On the clang side, we only need to implement some changes in how
aggregate types are passed by value. Specifically, we need to:
- pass (and return) "homogeneous" floating-point or vector aggregates in
FPRs and VRs (this is similar to the ARM homogeneous aggregate ABI)
- return aggregates of up to 16 bytes in one or two GPRs
The second piece is trivial to implement in any case. To implement
the first piece, this patch makes use of infrastructure recently
enabled in the LLVM PowerPC back-end to support passing array types
directly, where the array element type encodes properties needed to
handle homogeneous aggregates correctly.
Specifically, the array element type encodes:
- whether the parameter should be passed in FPRs, VRs, or just
GPRs/stack slots (for float / vector / integer element types,
respectively)
- what the alignment requirements of the parameter are when passed in
GPRs/stack slots (8 for float / 16 for vector / the element type
size for integer element types) -- this corresponds to the
"byval align" field
With this support in place, the clang part simply needs to *detect*
whether an aggregate type implements a float / vector homogeneous
aggregate as defined by the ELFv2 ABI, and if so, pass/return it
as array type using the appropriate float / vector element type.
llvm-svn: 213494
In C99, an array parameter declarator might have the form:
direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
where the static keyword indicates that the caller will always provide a
pointer to the beginning of an array with at least the number of elements
specified by the assignment expression. For constant sizes, we can use the
new dereferenceable attribute to pass this information to the optimizer. For
VLAs, we don't know the size, but (for addrspace(0)) do know that the pointer
must be nonnull (and so we can use the nonnull attribute).
llvm-svn: 213444
r211898 introduced a regression where a large struct, which would
normally be passed ByVal, was causing padding to be inserted to
prevent the backend from using some GPRs, in order to follow the
AAPCS. However, the type of the argument was not being set correctly,
so the backend cannot align 8-byte aligned struct types on the stack.
The fix is to not insert the padding arguments when the argument is
being passed ByVal.
llvm-svn: 213359
1. Revert "Add default feature for CPUs on AArch64 target in Clang"
at r210625. Then, all enabled feature will by passed explicitly by
-target-feature in -cc1 option.
2. Get "-mfpu" deprecated.
3. Implement support of "-march". Usage is:
-march=armv8-a+[no]feature
For instance, "-march=armv8-a+neon+crc+nocrypto". Here "armv8-a" is
necessary, and CPU names are not acceptable. Candidate features are
fp, neon, crc and crypto. Where conflicting feature modifiers are
specified, the right-most feature is used.
4. Implement support of "-mtune". Usage is:
-march=CPU_NAME
For instance, "-march=cortex-a57". This option will ONLY get
micro-architectural feature enabled specifying to target CPU,
like "+zcm" and "+zcz" for cyclone. Any architectural features
WON'T be modified.
5. Change usage of "-mcpu" to "-mcpu=CPU_NAME+[no]feature", which is
an alias to "-march={feature of CPU_NAME}+[no]feature" and
"-mtune=CPU_NAME" together. Where this option is used in conjunction
with -march or -mtune, those options take precedence over the
appropriate part of this option.
llvm-svn: 213353
This is used to mark the instructions emitted by Clang to implement
variety of UBSan checks. Generally, we don't want to instrument these
instructions with another sanitizers (like ASan).
Reviewed in http://reviews.llvm.org/D4544
llvm-svn: 213291
Summary:
I'm planning on upstreaming some test cases for the inline assembly
usage in the Mozilla code base. A lot of these test cases test the
recent fixes to this code.
Reviewers: rnk
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D4508
llvm-svn: 213255
Memory barrier __builtin_arm_[dmb, dsb, isb] intrinsics are required to
implement their corresponding ACLE and MSVC intrinsics.
This patch ports ARM dmb, dsb, isb intrinsic to AArch64.
Requires LLVM r213247.
Differential Revision: http://reviews.llvm.org/D4521
llvm-svn: 213250
Clang supports __assume, at least at the semantic level, when MS extensions are
enabled. Unfortunately, trying to actually compile code using __assume would
result in this error:
error: cannot compile this builtin function yet
__assume is an optimizer hint, and can be ignored at the IR level. Until LLVM
supports assumptions at the IR level, a noop lowering is valid, and that is
what is done here.
llvm-svn: 213206
An array showing up in an inline assembly input is accepted in ICC and
GCC 4.8
This fixes PR20201.
Differential Revision: http://reviews.llvm.org/D4382
llvm-svn: 212954
This patch implements __builtin_arm_nop intrinsic for AArch32 and AArch64,
which generates hint 0x0, the alias of NOP instruction.
This intrinsic is necessary to implement ACLE __nop intrinsic.
Differential Revision: http://reviews.llvm.org/D4495
llvm-svn: 212947
Currently ASan instrumentation pass creates a string with global name
for each instrumented global (to include global names in the error report). Global
name is already mangled at this point, and we may not be able to demangle it
at runtime (e.g. there is no __cxa_demangle on Android).
Instead, create a string with fully qualified global name in Clang, and pass it
to ASan instrumentation pass in llvm.asan.globals metadata. If there is no metadata
for some global, ASan will use the original algorithm.
This fixes https://code.google.com/p/address-sanitizer/issues/detail?id=264.
llvm-svn: 212872
MSVC accepts __noop without any trailing parens and treats it like a
literal zero. We don't treat __noop as an integer literal, but now at
least we can parse a naked __noop expression.
Reviewers: rsmith
Differential Revision: http://reviews.llvm.org/D4476
llvm-svn: 212860
We now have an LLVM-level nonnull attribute that can be applied to function
parameters, and we emit it for reference types (as of r209723), but did not
emit it when an __attribute__((nonnull)) was provided. Now we will.
llvm-svn: 212835
Teach UBSan vptr checker to ignore technically invalud down-casts on
blacklisted types.
Based on http://reviews.llvm.org/D4407 by Byoungyoung Lee!
llvm-svn: 212770
This patch adds support for respecting the ABI and type alignment
of aggregates passed by value. Currently, all aggregates are aligned
at 8 bytes in the parameter save area. This is incorrect for two
reasons:
- Aggregates that need alignment of 16 bytes or more should be aligned
at 16 bytes in the parameter save area. This is implemented by
using an appropriate "byval align" attribute in the IR.
- Aggregates that need alignment beyond 16 bytes need to be dynamically
realigned by the caller. This is implemented by setting the Realign
flag of the ABIArgInfo::getIndirect call.
In addition, when expanding a va_arg call accessing a type that is
aligned at 16 bytes in the argument save area (either one of the
aggregate types as above, or a vector type which is already aligned
at 16 bytes), code needs to align the va_list pointer accordingly.
Reviewed by Hal Finkel.
llvm-svn: 212743
This patch adds support for passing arguments of non-Altivec vector type
(i.e. defined via attribute ((vector_size (...)))) on powerpc64-linux.
While such types are not mentioned in the formal ABI document, this
patch implements a calling convention compatible with GCC:
- Vectors of size < 16 bytes are passed in a GPR
- Vectors of size > 16 bytes are passed via reference
Note that vector types with a number of elements that is not a power
of 2 are not supported by GCC, so there is no pre-existing ABI to
follow. We choose to pass those (of size < 16) as if widened to the
next power of two, so they might end up in a vector register or
in a GPR. (Sizes > 16 are always passed via reference as well.)
Reviewed by Hal Finkel.
llvm-svn: 212734
Summary:
While debugging another issue, I noticed that Mips currently specifies that the
count leading zero builtins are undefined when the input is zero. The
architecture specifications say that the clz and dclz instructions write 32 or
64 respectively when given zero.
This doesn't fix any bugs that I'm aware of but it may improve optimisation in
some cases.
Differential Revision: http://reviews.llvm.org/D4431
llvm-svn: 212618