Let ASTContext allocate the storage in its BumpPtrAllocator.
This will help us remove ASTContext's depedency on PartialDiagnostic.h soon.
llvm-svn: 149780
-Wno-everything remap all warnings to ignored.
We can now use "-Wno-everything -W<warning>" to ignore all warnings except
specific ones.
llvm-svn: 149121
fails within a call to a constexpr function. Add -fconstexpr-backtrace-limit
argument to driver and frontend, to control the maximum number of notes so
produced (default 10). Fix APValue printing to be able to pretty-print all
APValue types, and move the testing for this functionality from a unittest to
a -verify test now that it's visible in clang's output.
llvm-svn: 146749
In certain cases ASTReader would call the normal DiagnosticsEngine API to initialize
the state of diagnostic pragmas but DiagnosticsEngine would try to compare source locations
leading to crash because the main FileID was not yet initialized.
Yet another case of the ASTReader trying to use the normal APIs and inadvertently breaking
invariants. Fix this by having the ASTReader set up the internal state directly.
llvm-svn: 144153
the command line options (at least according to GCC's documentation). GCC 4.2
didn't appear to actually do this, but it seems like that has been fixed in
later release, so we will follow the docs.
llvm-svn: 141119
- This fixes a host of obscure bugs with regards to how warning mapping options composed with one another, and I believe makes the code substantially easier to read and reason about.
llvm-svn: 140770
- No actual functionality change for now, we still also use the diag::Mapping::{MAP_WARNING_NO_ERROR,MAP_ERROR_NO_FATAL,MAP_WARNING_SHOW_IN_SYSTEM_HEADER} for a little while longer.
llvm-svn: 140768
DiagnosticsEngine::setDiagnosticGroup{ErrorAsFatal,WarningAsError} methods which
more accurately model the correct API -- no internal change to the diagnostics
engine yet though.
- Also, stop honoring -Werror=everything (etc.) as a valid (but oddly behaved) option.
llvm-svn: 140747
Currently this includes -pedantic warnings as well; we'll need to consider whether these should
be included.
This works as expected with -Werror.
Test cases were added to Sema/warn-unused-parameters.c, but they should probably be broken off into
their own test file.
llvm-svn: 137910
source locations from source locations loaded from an AST/PCH file.
Previously, loading an AST/PCH file involved carefully pre-allocating
space at the beginning of the source manager for the source locations
and FileIDs that correspond to the prefix, and then appending the
source locations/FileIDs used for parsing the remaining translation
unit. This design forced us into loading PCH files early, as a prefix,
whic has become a rather significant limitation.
This patch splits the SourceManager space into two parts: for source
location "addresses", the lower values (growing upward) are used to
describe parsed code, while upper values (growing downward) are used
for source locations loaded from AST/PCH files. Similarly, positive
FileIDs are used to describe parsed code while negative FileIDs are
used to file/macro locations loaded from AST/PCH files. As a result,
we can load PCH/AST files even during parsing, making various
improvemnts in the future possible, e.g., teaching #include <foo.h> to
look for and load <foo.h.gch> if it happens to be already available.
This patch was originally written by Sebastian Redl, then brought
forward to the modern age by Jonathan Turner, and finally
polished/finished by me to be committed.
llvm-svn: 135484
When two different types has the same text representation in the same
diagnostic message, print an a.k.a. after the type if the a.k.a. gives extra
information about the type.
class versa_string;
typedef versa_string string;
namespace std {template <typename T> class vector;}
using std::vector;
void f(vector<string> v);
namespace std {
class basic_string;
typedef basic_string string;
template <typename T> class vector {};
void g() {
vector<string> v;
f(v);
}
}
Old message:
----------------
test.cc:15:3: error: no matching function for call to 'f'
f(&v);
^
test.cc:7:6: note: candidate function not viable: no known conversion from
'vector<string>' to 'vector<string>' for 1st argument
void f(vector<string> v);
^
1 error generated.
New message:
---------------
test.cc:15:3: error: no matching function for call to 'f'
f(v);
^
test.cc:7:6: note: candidate function not viable: no known conversion from
'vector<string>' (aka 'std::vector<std::basic_string>') to
'vector<string>' (aka 'std::vector<versa_string>') for 1st argument
void f(vector<string> v);
^
1 error generated.
llvm-svn: 134904
Patch by Matthieu Monrocq with tweaks by me to avoid StringRefs in the static
diagnostic data structures, which resulted in a huge global-var-init function.
Depends on llvm commit r132046.
llvm-svn: 132047
Diagnostic pragmas are broken because we don't keep track of the diagnostic state changes and we only check the current/latest state.
Problems manifest if a diagnostic is emitted for a source line that has different diagnostic state than the current state; this can affect
a lot of places, like C++ inline methods, template instantiations, the lexer, etc.
Fix the issue by having the Diagnostic object keep track of the source location of the pragmas so that it is able to know what is the diagnostic state at any given source location.
Fixes rdar://8365684.
llvm-svn: 121873
-Move the stuff of Diagnostic related to creating/querying diagnostic IDs into a new DiagnosticIDs class.
-DiagnosticIDs can be shared among multiple Diagnostics for multiple translation units.
-The rest of the state in Diagnostic object is considered related and tied to one translation unit.
-Have Diagnostic point to the SourceManager that is related with. Diagnostic can now accept just a
SourceLocation instead of a FullSourceLoc.
-Reflect the changes to various interfaces.
llvm-svn: 119730
emitting diagnostics in a binary form to be consumed by libclang,
since libclang no longer does any of its work out-of-process, making
this code dead. Besides, this stuff never worked at 100% anyway.
llvm-svn: 116250
reparses an already-parsed translation unit. At the moment it's just a
convenience function, but we hope to use it for performance
optimizations.
llvm-svn: 108756
to use them instead of SourceRange. CharSourceRange is just a SourceRange
plus a bool that indicates whether the range has the end character resolved
or whether the end location is the start of the end token. While most of
the compiler wants to think of ranges that have ends that are the start of
the end token, the printf diagnostic stuff wants to highlight ranges within
tokens.
This is transparent to the diagnostic stuff. To start taking advantage of
the new capabilities, you can do something like this:
Diag(..) << CharSourceRange::getCharRange(Begin,End)
llvm-svn: 106338
than 127 groups so this was already failing given -fsigned-char. A subsequent
to commit to TableGen will generate shorts for the arrays themselves.
llvm-svn: 103703
print the diagnostic category number in the [] at the end
of the line. For example:
$ cat t.c
#include <stdio.h>
void foo() {
printf("%s", 4);
}
$ clang t.c -fsyntax-only -fdiagnostics-print-source-range-info
t.c:3:11:{3:10-3:12}{3:15-3:16}: warning: conversion specifies type 'char *' but the argument has type 'int' [-Wformat,1]
printf("%s", 4);
~^ ~
1 warning generated.
Clients that want category information can now pick the number
out of the output, rdar://7928231.
More coming.
llvm-svn: 103053
and diagnostic groups. This allows the compiler to group
diagnostics together (e.g. "Logic Warning",
"Format String Warning", etc) like the static analyzer does.
This is not exposed through anything in the compiler yet.
llvm-svn: 103051
we will print with each error that occurs during template
instantiation. When the backtrace is longer than that, we will print
N/2 of the innermost backtrace entries and N/2 of the outermost
backtrace entries, then skip the middle entries with a note such as:
note: suppressed 2 template instantiation contexts; use
-ftemplate-backtrace-limit=N to change the number of template
instantiation entries shown
This should eliminate some excessively long backtraces that aren't
providing any value.
llvm-svn: 101882
separate count of "suppressed" errors. This way, semantic analysis
bits that depend on the error count to determine whether problems
occured (e.g., some template argument deduction failures, jump-scope
checking) will not get confused.
The actual problem here is that a missing #include (which is a fatal
error) could cause the jump-scope checker to run on invalid code,
which it is not prepared to do. Trivial fix for both
<rdar://problem/7775941> and <rdar://problem/7775709>.
llvm-svn: 101297
actually turned it on. If a diag is produced by a warning which
is an extension but defaults to on, and has no warning group, don't
print any option info.
llvm-svn: 101071
of errors and warnings. This allows us to emit something like this:
2 warnings and 1 error generated.
instead of:
3 diagnostics generated.
This also stops counting 'notes' because they are just follow-on information
about the previous diag, not a diagnostic in themselves.
llvm-svn: 100675
cache of PartialDiagnostic::Storage objects into an allocator within
the ASTContext. This eliminates a significant amount of malloc
traffic, for a 10% performance improvement in -fsyntax-only wall-clock
time with 403.gcc's combine.c.
Also, eliminate the RequireNonAbstractType hack I put in earlier,
which was but a symptom of this larger problem.
Fixes <rdar://problem/7806091>.
llvm-svn: 99849
how to handle a diagnostic during template argument deduction, which
may be "substitution failure", "suppress", or "report". This keeps us
from, e.g., emitting warnings while performing template argument
deduction.
llvm-svn: 99560
Diagnostic subsystem, which is used in the rare case where we find a
serious problem (i.e., an inconsistency in the file system) while
we're busy formatting another diagnostic. In this case, the delayed
diagnostic will be emitted after we're done with the other
diagnostic. This is only to be used for fatal conditions detected at
very inconvenient times, where we can neither stop the current
diagnostic in flight nor can we suppress the second error.
llvm-svn: 99175
we attach diagnostics to translation units and code-completion
results, so they can be queried at any time.
To facilitate this, the new StoredDiagnostic class stores a diagnostic
in a serializable/deserializable form, and ASTUnit knows how to
capture diagnostics in this stored form. CIndex's CXDiagnostic is a
thin wrapper around StoredDiagnostic, providing a C interface to
stored or de-serialized diagnostics.
I've XFAIL'd one test case temporarily, because currently we end up
storing diagnostics in an ASTUnit that's never returned to the user
(because it contains errors). I'll introduce a temporary fix for this
soon; the real fix will be to allow us to return and query invalid ASTs.
llvm-svn: 96592
their spelling location. This prevents warnings from being swallowed just
because the caret is on the first parenthesis in, say, NULL.
This is an experiment; the risk is that there might be a substantial number
of system headers which #define symbols to expressions which inherently cause
warnings. My theory is that that's rare enough that it can be worked
around case-by-case, and that producing useful warnings around NULL is worth
it. But I'm willing to accept that I might be empirically wrong.
llvm-svn: 95870
so that CIndex can report diagnostics through the normal mechanisms
even when executing Clang in a separate process. This applies both
when performing code completion and when using ASTs as an intermediary
for clang_createTranslationUnitFromSourceFile().
The serialized format is not perfect at the moment, because it does
not encapsulate macro-instantiation information. Instead, it maps all
source locations back to the instantiation location. However, it does
maintain source-range and fix-it information. To get perfect fidelity
from the serialized format would require serializing a large chunk of
the source manager; at present, it isn't clear if this code will live
long enough for that to matter.
llvm-svn: 94740
http://llvm.org/viewvc/llvm-project?view=rev&revision=71086
Note - This commit only includes the fix for:
<rdar://problem/6309338> slightly different error message format for Visual Studio.
The fix for <rdar://problem/6845623> from protocol to template. is separate/forthcoming.
llvm-svn: 90642
pass them down into the ArgToStringFn implementation. This allows
redundancy across operands to a diagnostic to be eliminated.
This isn't used yet, so no functionality change.
llvm-svn: 84602
what we found when we looked into <blah>", where <blah> is a
DeclContext*. We can now format DeclContext*'s in nice ways, e.g.,
"namespace N", "the global namespace", "'class Foo'".
This is part of PR3990, but we're not quite there yet.
llvm-svn: 84028
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
llvm-svn: 82166
qualified name does not actually refer into a class/class
template/class template partial specialization.
Improve printing of nested-name-specifiers to eliminate redudant
qualifiers. Also, make it possible to output a nested-name-specifier
through a DiagnosticBuilder, although there are relatively few places
that will use this leeway.
llvm-svn: 80056
Implement support for C++ Substitution Failure Is Not An Error
(SFINAE), which says that errors that occur during template argument
deduction do *not* produce diagnostics and do not necessarily make a
program ill-formed. Instead, template argument deduction silently
fails. This is currently implemented for template argument deduction
during matching of class template partial specializations, although
the mechanism will also apply to template argument deduction for
function templates. The scheme is simple:
- If we are in a template argument deduction context, any diagnostic
that is considered a SFINAE error (or warning) will be
suppressed. The error will be propagated up the call stack via the
normal means.
- By default, all warnings and errors are SFINAE errors. Add the
NoSFINAE class to a diagnostic in the .td file to make it a hard
error (e.g., for access-control violations).
Note that, to make this fully work, every place in Sema that emits an
error *and then immediately recovers* will need to check
Sema::isSFINAEContext() to determine whether it must immediately
return an error rather than recovering.
llvm-svn: 73332
them with -Werror. Custom diags cannot be mapped, and this makes
-Werror cause a determinstic crash for the checker and other
clients of the custom diagnostics machinery. rdar://6816191
llvm-svn: 70639