I forgot to do this initially, and added when I saw this fail in
a no-asserts build, but managed to loose the diff from the actual patch
that got submitted. Very sorry.
llvm-svn: 277562
reason about and less error prone.
The core idea is to fully parse the text without trying to identify
passes or structure. This is done with a single state machine. There
were various bugs in the logic around this previously that were repeated
and scattered across the code. Having a single routine makes it much
easier to fix and get correct. For example, this routine doesn't suffer
from PR28577.
Then the actual pass construction is handled using *much* easier to read
code and simple loops, with particular pass manager construction sunk to
live with other pass construction. This is especially nice as the pass
managers *are* in fact passes.
Finally, the "implicit" pass manager synthesis is done much more simply
by forming "pre-parsed" structures rather than having to duplicate tons
of logic.
One of the bugs fixed by this was evident in the tests where we accepted
a pipeline that wasn't really well formed. Another bug is PR28577 for
which I have added a test case.
The code is less efficient than the previous code but I'm really hoping
that's not a priority. ;]
Thanks to Sean for the review!
Differential Revision: https://reviews.llvm.org/D22724
llvm-svn: 277561
This prevents StringSwitch from being used with 'auto', which is
important because the inferred type is StringSwitch rather than the
result type. This is a problem because StringSwitch stores addresses
of temporary values rather than copying or moving the value into its
own storage.
This is a compromise that still allows wrapping StringSwitch in other
temporary structures, which (unlike StringSwitch) may be non-trivial
to set up and therefore want to at least be movable. (For an example,
see QueryParser.cpp in clang-tools-extra.)
Changing this uncovered the bug in PassBuilder, also in this patch.
Clang doesn't seem to have any occurrences of the issue.
Re-commit of r276652.
llvm-svn: 276671
...but most importantly, it cannot be used well with 'auto', because
the inferred type is StringSwitch rather than the result type. This
is a problem because StringSwitch stores addresses of temporary
values rather than copying or moving the value into its own storage.
Changing this uncovered the bug in PassBuilder, also in this patch.
Clang doesn't seem to have any occurrences of the issue.
llvm-svn: 276652
We just set PreserveLCSSA to always true since we don't have an
analogous method `mustPreserveAnalysisID(LCSSA)`.
Also port LoopInfo verifier pass to test LoopUnrollPass.
llvm-svn: 276063
Summary:
The direct motivation for the port is to ensure that the OptRemarkEmitter
tests work with the new PM.
This remains a function pass because we not only create multiple loops
but could also version the original loop.
In the test I need to invoke opt
with -passes='require<aa>,loop-distribute'. LoopDistribute does not
directly depend on AA however LAA does. LAA uses getCachedResult so
I *think* we need manually pull in 'aa'.
Reviewers: davidxl, silvas
Subscribers: sanjoy, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D22437
llvm-svn: 275811
Summary:
The main goal is to able to start using the new OptRemarkEmitter
analysis from the LoopVectorizer. Since the vectorizer was recently
converted to the new PM, it makes sense to convert this analysis as
well.
This pass is currently tested through the LoopDistribution pass, so I am
also porting LoopDistribution to get coverage for this analysis with the
new PM.
Reviewers: davidxl, silvas
Subscribers: llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D22436
llvm-svn: 275810
Summary: Convert LoopInstSimplify to new PM. Unfortunately there is no exisiting unittest for this pass.
Reviewers: davidxl, silvas
Subscribers: silvas, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D22280
llvm-svn: 275576
Summary: Port Dead Loop Deletion Pass to the new pass manager.
Reviewers: silvas, davide
Subscribers: llvm-commits, sanjoy, mcrosier
Differential Revision: https://reviews.llvm.org/D21483
llvm-svn: 275453
New pass manager for LICM.
Summary: Port LICM to the new pass manager.
Reviewers: davidxl, silvas
Subscribers: krasin, vitalybuka, silvas, davide, sanjoy, llvm-commits, mehdi_amini
Differential Revision: http://reviews.llvm.org/D21772
llvm-svn: 275224
There's a little bit of churn in this patch because the initialization
mechanism is now shared between the old and the new PM. Other than
that, it's just a pretty mechanical translation.
llvm-svn: 275082
While here move simplifyLoop() function to the new header, as
suggested by Chandler in the review.
Differential Revision: http://reviews.llvm.org/D21404
llvm-svn: 274959
StratifiedSets (as implemented) is very fast, but its accuracy is also
limited. If we take a more aggressive andersens-like approach, we can be
way more accurate, but we'll also end up being slower.
So, we've decided to split CFLAA into CFLSteensAA and CFLAndersAA.
Long-term, we want to end up in a place where CFLSteens is queried
first; if it can provide an answer, great (since queries are basically
map lookups). Otherwise, we'll fall back to CFLAnders, BasicAA, etc.
This patch splits everything out so we can try to do something like
that when we get a reasonable CFLAnders implementation.
Patch by Jia Chen.
Differential Revision: http://reviews.llvm.org/D21910
llvm-svn: 274589
the new pass manager.
This adds operator<< overloads for the various bits of the
LazyCallGraph, dump methods for use from the debugger, and debug logging
using them to the CGSCC pass manager.
Having this was essential for debugging the call graph update patch, and
I've extracted what I could from that patch here to minimize the delta.
llvm-svn: 273961
This is indeed a much cleaner approach (thanks to Daniel Berlin
for pointing out), and also David/Sean for review.
Differential Revision: http://reviews.llvm.org/D21454
llvm-svn: 273032
pass manager passes' `run` methods.
This removes a bunch of SFINAE goop from the pass manager and just
requires pass authors to accept `AnalysisManager<IRUnitT> &` as a dead
argument. This is a small price to pay for the simplicity of the system
as a whole, despite the noise that changing it causes at this stage.
This will also helpfull allow us to make the signature of the run
methods much more flexible for different kinds af passes to support
things like intelligently updating the pass's progression over IR units.
While this touches many, many, files, the changes are really boring.
Mostly made with the help of my trusty perl one liners.
Thanks to Sean and Hal for bouncing ideas for this with me in IRC.
llvm-svn: 272978
Daniel Berlin expressed some real concerns about the port and proposed
and alternative approach. I'll revert this for now while working on a
new patch, which I hope to put up for review shortly. Sorry for the churn.
llvm-svn: 272925
This uses the "runImpl" approach to share code with the old PM.
Porting to the new PM meant abandoning the anonymous namespace enclosing
most of SLPVectorizer.cpp which is a bit of a bummer (but not a big deal
compared to having to pull the pass class into a header which the new PM
requires since it calls the constructor directly).
llvm-svn: 272766
The need for all these Lookup* functions is just because of calls to
getAnalysis inside methods (i.e. not at the top level) of the
runOnFunction method. They should be straightforward to clean up when
the old PM is gone.
llvm-svn: 272615
This reverts commit r272603 and adds a fix.
Big thanks to Davide for pointing me at r216244 which gives some insight
into how to fix this VS2013 issue. VS2013 can't synthesize a move
constructor. So the fix here is to add one explicitly to the
JumpThreadingPass class.
llvm-svn: 272607
This follows the approach in r263208 (for GVN) pretty closely:
- move the bulk of the body of the function to the new PM class.
- expose a runImpl method on the new-PM class that takes the IRUnitT and
pointers/references to any analyses and use that to implement the
old-PM class.
- use a private namespace in the header for stuff that used to be file
scope
llvm-svn: 272597
This is a bit gnarly since LVI is maintaining its own cache.
I think this port could be somewhat cleaner, but I'd rather not spend
too much time on it while we still have the old pass hanging around and
limiting how much we can clean things up.
Once the old pass is gone it will be easier (less time spent) to clean
it up anyway.
This is the last dependency needed for porting JumpThreading which I'll
do in a follow-up commit (there's no printer pass for LVI or anything to
test it, so porting a pass that depends on it seems best).
I've been mostly following:
r269370 / D18834 which ported Dependence Analysis
r268601 / D19839 which ported BPI
llvm-svn: 272593
Summary:
There are some rough corners, since the new pass manager doesn't have
(as far as I can tell) LoopSimplify and LCSSA, so I've updated the
tests to run them separately in the old pass manager in the lit tests.
We also don't have an equivalent for AU.setPreservesCFG() in the new
pass manager, so I've left a FIXME.
Reviewers: bogner, chandlerc, davide
Subscribers: sanjoy, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D20783
llvm-svn: 271846
Add support for the new pass manager to MemorySSA pass.
Change MemorySSA to be computed eagerly upon construction.
Change MemorySSAWalker to be owned by the MemorySSA object that creates
it.
Reviewers: dberlin, george.burgess.iv
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D19664
llvm-svn: 271432
Summary:
Implement guard widening in LLVM. Description from GuardWidening.cpp:
The semantics of the `@llvm.experimental.guard` intrinsic lets LLVM
transform it so that it fails more often that it did before the
transform. This optimization is called "widening" and can be used hoist
and common runtime checks in situations like these:
```
%cmp0 = 7 u< Length
call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
call @unknown_side_effects()
%cmp1 = 9 u< Length
call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ]
...
```
to
```
%cmp0 = 9 u< Length
call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
call @unknown_side_effects()
...
```
If `%cmp0` is false, `@llvm.experimental.guard` will "deoptimize" back
to a generic implementation of the same function, which will have the
correct semantics from that point onward. It is always _legal_ to
deoptimize (so replacing `%cmp0` with false is "correct"), though it may
not always be profitable to do so.
NB! This pass is a work in progress. It hasn't been tuned to be
"production ready" yet. It is known to have quadriatic running time and
will not scale to large numbers of guards
Reviewers: reames, atrick, bogner, apilipenko, nlewycky
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D20143
llvm-svn: 269997
Ported DA to the new PM by splitting the former DependenceAnalysis Pass
into a DependenceInfo result type and DependenceAnalysisWrapperPass type
and adding a new PM-style DependenceAnalysis analysis pass returning the
DependenceInfo.
Patch by Philip Pfaffe, most of the review by Justin.
Differential Revision: http://reviews.llvm.org/D18834
llvm-svn: 269370
clarify their purpose.
Firstly, call them "...Mixin" types so it is clear that there is no
type hierarchy being formed here. Secondly, use the term 'Info' to
clarify that they aren't adding any interesting *semantics* to the
passes or analyses, just exposing APIs used by the management layer to
get information about the pass or analysis.
Thanks to Manuel for helping pin down the naming confusion here and come
up with effective names to address it.
In case you already have some out-of-tree stuff, the following should be
roughly what you want to update:
perl -pi -e 's/\b(Pass|Analysis)Base\b/\1InfoMixin/g'
llvm-svn: 263217
work in the face of the limitations of DLLs and templated static
variables.
This requires passes that use the AnalysisBase mixin provide a static
variable themselves. So as to keep their APIs clean, I've made these
private and befriended the CRTP base class (which is the common
practice).
I've added documentation to AnalysisBase for why this is necessary and
at what point we can go back to the much simpler system.
This is clearly a better pattern than the extern template as it caught
*numerous* places where the template magic hadn't been applied and
things were "just working" but would eventually have broken
mysteriously.
llvm-svn: 263216
tests to run GVN in both modes.
This is mostly the boring refactoring just like SROA and other complex
transformation passes. There is some trickiness in that GVN's
ValueNumber class requires hand holding to get to compile cleanly. I'm
open to suggestions about a better pattern there, but I tried several
before settling on this. I was trying to balance my desire to sink as
much implementation detail into the source file as possible without
introducing overly many layers of abstraction.
Much like with SROA, the design of this system is made somewhat more
cumbersome by the need to support both pass managers without duplicating
the significant state and logic of the pass. The same compromise is
struck here.
I've also left a FIXME in a doxygen comment as the GVN pass seems to
have pretty woeful documentation within it. I'd like to submit this with
the FIXME and let those more deeply familiar backfill the information
here now that we have a nice place in an interface to put that kind of
documentaiton.
Differential Revision: http://reviews.llvm.org/D18019
llvm-svn: 263208
actually finish wiring up the old call graph.
There were bugs in the old call graph that hadn't been caught because it
wasn't being tested. It wasn't being tested because it wasn't in the
pipeline system and we didn't have a printing pass to run in tests. This
fixes all of that.
As for why I'm still keeping the old call graph alive its so that I can
port GlobalsAA to the new pass manager with out forking it to work with
the lazy call graph. That's clearly the right eventual design, but it
seems pragmatic to defer that until its necessary. The old call graph
works just fine for GlobalsAA.
llvm-svn: 263104
This is a fairly straightforward port to the new pass manager with one
exception. It removes a very questionable use of releaseMemory() in
the old pass to invalidate its caches between runs on a function.
I don't think this is really guaranteed to be safe. I've just used the
more direct port to the new PM to address this by nuking the results
object each time the pass runs. While this could cause some minor malloc
traffic increase, I don't expect the compile time performance hit to be
noticable, and it makes the correctness and other aspects of the pass
much easier to reason about. In some cases, it may make things faster by
making the sets and maps smaller with better locality. Indeed, the
measurements collected by Bruno (thanks!!!) show mostly compile time
improvements.
There is sadly very limited testing at this point as there are only two
tests of memdep, and both rely on GVN. I'll be porting GVN next and that
will exercise this heavily though.
Differential Revision: http://reviews.llvm.org/D17962
llvm-svn: 263082
in the PassBuilder.
These are really just stubs for now, but they give a nice API surface
that Clang or other tools can start learning about and enabling for
experimentation.
I've also wired up parsing various synthetic module pass names to
generate these set pipelines. This allows the pipelines to be combined
with other passes and have their order controlled, with clear separation
between the *kind* of canned pipeline, and the *level* of optimization
to be used within that canned pipeline.
The most interesting part of this patch is almost certainly the spec for
the different optimization levels. I don't think we can ever have hard
and fast rules that would make it easy to determine whether a particular
optimization makes sense at a particular level -- it will always be in
large part a judgement call. But hopefully this will outline the
expected rationale that should be used, and the direction that the
pipelines should be taken. Much of this was based on a long llvm-dev
discussion I started years ago to try and crystalize the intent behind
these pipelines, and now, at long long last I'm returning to the task of
actually writing it down somewhere that we can cite and try to be
consistent with.
Differential Revision: http://reviews.llvm.org/D12826
llvm-svn: 262196
classes changed whether the decltype of these expressions was
a reference. I'm somewhat horrified why, and there may need to be
a deeper fix on MSVC, but this should at least get the bots a step
further.
llvm-svn: 262008
analyses in the new pass manager.
These just handle really basic stuff: turning a type name into a string
statically that is nice to print in logs, and getting a static unique ID
for each analysis.
Sadly, the format of passes in anonymous namespaces makes using their
names in tests really annoying so I've customized the names of the no-op
passes to keep tests sane to read.
This is the first of a few simplifying refactorings for the new pass
manager that should reduce boilerplate and confusion.
llvm-svn: 262004