Summary:
Fixes PR28281.
MSVC lists indirect virtual base classes in the field list of a class.
This change makes Clang emit the information necessary for LLVM to
emit such records.
Reviewers: rnk, ruiu, zturner
Differential Revision: https://reviews.llvm.org/D25579
llvm-svn: 285132
Preparation to implement DW_AT_alignment support:
- We pass non-zero align value to DIBuilder only when alignment was forced
- Modify tests to match this change
Differential Revision: https://reviews.llvm.org/D24426
llvm-svn: 284679
We also need to add ObjCTypeParamTypeLoc. ObjCTypeParamType supports the
representation of "T <protocol>" where T is a type parameter. Before this,
we use TypedefType to represent the type parameter for ObjC.
ObjCTypeParamType has "ObjCTypeParamDecl *OTPDecl" and it extends from
ObjCProtocolQualifiers. It is a non-canonical type and is canonicalized
to the underlying type with the protocol qualifiers.
rdar://24619481
rdar://25060179
Differential Revision: http://reviews.llvm.org/D23079
llvm-svn: 281355
Use llvm::DINode::DIFlags type (strongly typed enum) for debug flags instead of unsigned int to avoid problems on platforms with sizeof(int) < 4: we already have flags with values > (1 << 16).
Patch by: Victor Leschuk <vleschuk@gmail.com>
Differential Revision: https://reviews.llvm.org/D23767
llvm-svn: 280701
The shape is really just the number of methods in the vftable, since we
don't support 16 bit far calls. All calls are near. Encode this number
in the size of the artificial __vtbl_ptr_type DIDerivedType that we
generate. For DWARF, this will be a normal pointer, but for codeview
this will be a wide pointer that gets pattern matched into a
VFTableShape record. Insert this type into the element list of all
dynamic classes when emitting CodeView, so that the backend can emit the
shape even if the vptr lives in a primary base class.
Fixes PR28150
llvm-svn: 280255
Currently Clang use int32 to represent sampler_t, which have been a source of issue for some backends, because in some backends sampler_t cannot be represented by int32. They have to depend on kernel argument metadata and use IPA to find the sampler arguments and global variables and transform them to target specific sampler type.
This patch uses opaque pointer type opencl.sampler_t* for sampler_t. For each use of file-scope sampler variable, it generates a function call of __translate_sampler_initializer. For each initialization of function-scope sampler variable, it generates a function call of __translate_sampler_initializer.
Each builtin library can implement its own __translate_sampler_initializer(). Since the real sampler type tends to be architecture dependent, allowing it to be initialized by a library function simplifies backend design. A typical implementation of __translate_sampler_initializer could be a table lookup of real sampler literal values. Since its argument is always a literal, the returned pointer is known at compile time and easily optimized to finally become some literal values directly put into image read instructions.
This patch is partially based on Alexey Sotkin's work in Khronos Clang (3d4eec6162).
Differential Revision: https://reviews.llvm.org/D21567
llvm-svn: 277024
Patch broke ModuleDebugInfo test on the build bots (but not locally). Again.
svn revision: r276271
This reverts commit 9da8a1b05362bc96f2855fb32b5588b89407685d.
llvm-svn: 276279
Unreferenced nested structs and classes were omitted from the debug info. In DWARF, this was intentional, to avoid bloat. But for CodeView, we want this information to be consistent with what Microsoft tools would produce and expect.
llvm-svn: 276271
Reverting because it causes a test failure on build bots (Modules/ModuleDebugInfo.cpp). Failure does not reproduce locally.
svn revision: rL274698
This reverts commit 3c5ed6599b086720aab5b8bd6941149d066806a6.
llvm-svn: 274706
This should work now that the LLVM-side of the change has landed successfully.
Original Differential Revision: http://reviews.llvm.org/D21705
This reverts commit a30322e861c387e1088f47065d0438c6bb019879.
llvm-svn: 274698
This includes nested types in the member list, even if there are no members of that type. Note that structs and classes have themselves as an "implicit struct" as the first member, so we skip implicit ones.
Differential Revision: http://reviews.llvm.org/D21705
llvm-svn: 274628
Emit the underlying storage offset in addition to the starting bit
position of the field.
This fixes PR28162.
Differential Revision: http://reviews.llvm.org/D21783
llvm-svn: 274201
Putting OpenCLImageTypes.def to clangAST library violates layering requirement: "It's not OK for a Basic/ header to include an AST/ header".
This fixes the modules build.
Differential revision: http://reviews.llvm.org/D18954
Reviewers: Richard Smith, Vassil Vassilev.
llvm-svn: 266180
Revert the two changes to thread CodeGenOptions into the TargetInfo allocation
and to fix the layering violation by moving CodeGenOptions into Basic.
Code Generation is arguably not particularly "basic". This addresses Richard's
post-commit review comments. This change purely does the mechanical revert and
will be followed up with an alternate approach to thread the desired information
into TargetInfo.
llvm-svn: 265806
I. Current implementation of images is not conformant to spec in the following points:
1. It makes no distinction with respect to access qualifiers and therefore allows to use images with different access type interchangeably. The following code would compile just fine:
void write_image(write_only image2d_t img);
kernel void foo(read_only image2d_t img) { write_image(img); } // Accepted code
which is disallowed according to s6.13.14.
2. It discards access qualifier on generated code, which leads to generated code for the above example:
call void @write_image(%opencl.image2d_t* %img);
In OpenCL2.0 however we can have different calls into write_image with read_only and wite_only images.
Also generally following compiler steps have no easy way to take different path depending on the image access: linking to the right implementation of image types, performing IR opts and backend codegen differently.
3. Image types are language keywords and can't be redeclared s6.1.9, which can happen currently as they are just typedef names.
4. Default access qualifier read_only is to be added if not provided explicitly.
II. This patch corrects the above points as follows:
1. All images are encapsulated into a separate .def file that is inserted in different points where image handling is required. This avoid a lot of code repetition as all images are handled the same way in the code with no distinction of their exact type.
2. The Cartesian product of image types and image access qualifiers is added to the builtin types. This simplifies a lot handling of access type mismatch as no operations are allowed by default on distinct Builtin types. Also spec intended access qualifier as special type qualifier that are combined with an image type to form a distinct type (see statement above - images can't be created w/o access qualifiers).
3. Improves testing of images in Clang.
Author: Anastasia Stulova
Reviewers: bader, mgrang.
Subscribers: pxli168, pekka.jaaskelainen, yaxunl.
Differential Revision: http://reviews.llvm.org/D17821
llvm-svn: 265783
This is a mechanical move of CodeGenOptions from libFrontend to libBasic. This
fixes the layering violation introduced earlier by threading CodeGenOptions into
TargetInfo. It should also fix the modules based self-hosting builds. NFC.
llvm-svn: 265702
Summary:
Support for OpenCL 2.0 pipe type.
This is a bug-fix version for bader's patch reviews.llvm.org/D14441
Reviewers: pekka.jaaskelainen, Anastasia
Subscribers: bader, Anastasia, cfe-commits
Differential Revision: http://reviews.llvm.org/D15603
llvm-svn: 257254
Add support for the `-fdebug-prefix-map=` option as in GCC. The syntax is
`-fdebug-prefix-map=OLD=NEW`. When compiling files from a path beginning with
OLD, change the debug info to indicate the path as start with NEW. This is
particularly helpful if you are preprocessing in one path and compiling in
another (e.g. for a build cluster with distcc).
Note that the linearity of the implementation is not as terrible as it may seem.
This is normally done once per file with an expectation that the map will be
small (1-2) entries, making this roughly linear in the number of input paths.
Addresses PR24619.
llvm-svn: 250094
when building a module. Clang already records the module signature when
building a skeleton CU to reference a clang module.
Matching the id in the skeleton with the one in the module allows a DWARF
consumer to verify that they found the correct version of the module
without them needing to know about the clang module format.
llvm-svn: 248345
The signature may not have been computed at the time the module reference
is generated (e.g.: in the future while emitting debug info for a clang
module). Using the full module name is safe because each clang module may
only have a single definition.
NFC.
llvm-svn: 248037
clang modules, if -dwarf-ext-refs (DebugTypesExtRefs) is specified.
This reimplements r247369 in about a third of the amount of code.
Thanks to David Blaikie pointing this out in post-commit review!
llvm-svn: 247432
When -fmodule-format is set to "obj", emit debug info for all types
declared in a module or referenced by a declaration into the module's
object file container.
This patch adds support for Objective-C types and methods.
llvm-svn: 247068
Usually debug info is created on the fly while during codegen.
With this API it becomes possible to create standalone debug info
for types that are not referenced by any code, such as emitting debug info
for a clang module or for implementing something like -gfull.
Because on-the-fly debug info generation may still insert retained types
on top of them, all RetainedTypes are uniqued in CGDebugInfo::finalize().
llvm-svn: 246210
to enable the use of external type references in the debug info
(a.k.a. module debugging).
The driver expands -gmodules to "-g -fmodule-format=obj -dwarf-ext-refs"
and passes that to cc1. All this does at the moment is set a flag
codegenopts.
http://reviews.llvm.org/D11958
llvm-svn: 246192
a BumpPtrAllocator. This at least now handles the case where there is no
concatentation without calling memcpy on a null pointer. It might be
interesting to handle the case where everything is empty without
round-tripping through the allocator, but it wasn't clear to me if the
pointer returned is significant in any way, so I've left it in
a conservatively more-correct state.
Again, found with UBSan.
llvm-svn: 243948
Adjust to LLVM DIBuilder API changes in r243764, using
`createAutoVariable()` and `createParameterVariable()` in place of
`createLocalVariable()`. No real functionality change here.
llvm-svn: 243765
Change `getOrCreateLimitedType()` to return a `DICompositeType` and
remove the casts from its callers. Inside, I've strengthened a `cast`
from `DICompositeTypeBase`, but the casts in the callers already prove
that this is safe. There should be no functionality change here.
llvm-svn: 243155
different function signatures. (Previously clang would emit all block
pointer types with the type of the first block pointer in the compile
unit.)
rdar://problem/21602473
llvm-svn: 241534
Function static variables, typedefs and records (class, struct or union) declared inside
a lexical scope were associated with the function as their parent scope, rather than the
lexical scope they are defined or declared in.
This fixes PR19238
Patch by: amjad.aboud@intel.com
Differential Revision: http://reviews.llvm.org/D9760
llvm-svn: 241154
This allows a module-aware debugger such as LLDB to import the currently
visible modules before dropping into the expression evaluator.
rdar://problem/20965932
llvm-svn: 241084
LLVM r236120 renamed debug info IR constructs to use a `DI` prefix, now
that the `DIDescriptor` hierarchy has been gone for about a week. This
commit was generated using the rename-md-di-nodes.sh upgrade script
attached to PR23080, followed by running clang-format-diff.py on the
`lib/` portion of the patch.
llvm-svn: 236121
An upcoming LLVM commit will remove the `DIArray` and `DITypeArray`
typedefs that shadow `DebugNodeArray` and `MDTypeRefArray`,
respectively. Use those types directly.
llvm-svn: 235412
Prepare for the deletion in LLVM of the subclasses of (the already
deleted) `DIScope` by using the raw pointers they were wrapping
directly.
llvm-svn: 235355
Subclasses of (the already deleted) `DIType` will be deleted by an
upcoming LLVM commit. Remove references.
While `DICompositeType` wraps `MDCompositeTypeBase` and `DIDerivedType`
wraps `MDDerivedTypeBase`, most uses of each really meant the more
specific `MDCompositeType` and `MDDerivedType`. I updated accordingly.
llvm-svn: 235350
LLVM r235111 changed the `DIBuilder` API to stop using `DIDescriptor`
and its subclasses. Rolled into this was some tightening up of types:
- Scopes: `DIDescriptor` => `MDScope*`.
- Generic debug nodes: `DIDescriptor` => `DebugNode*`.
- Subroutine types: `DICompositeType` => `MDSubroutineType*`.
- Composite types: `DICompositeType` => `MDCompositeType*`.
Note that `DIDescriptor` wraps `MDNode`, and `DICompositeType` wraps
`MDCompositeTypeBase`.
It's this new type strictness that requires changes here.
llvm-svn: 235112
distinction between the different use-cases. With the previous default
behavior we would occasionally emit empty debug locations in situations
where they actually were strictly required (= on invoke insns).
We now have a choice between defaulting to an empty location or an
artificial location.
Specifically, this fixes a bug caused by a missing debug location when
emitting C++ EH cleanup blocks from within an artificial function, such as
an ObjC destroy helper function.
rdar://problem/19670595
llvm-svn: 228003
This is half a fix for a GDB test suite failure that expects to start at
'a' in the following code:
void func(int a)
if (a
&&
b)
...
But instead, without this change, the comparison was assigned to '&&'
(well, worse actually - because there was a chained 'a && b && c' and it
was assigned to the second '&&' because of a recursive application of
this bug) and then the load folded into the comparison so breaking on
the function started at '&&' instead of 'a'.
The other part of this needs to be fixed in LLVM where it's ignoring the
location of the icmp and instead using the location of the branch
instruction.
The fix to the conditional operator is actually a no-op currently,
because the conditional operator's location coincides with 'a' (the
start of the conditional expression) but should probably be '?' instead.
See the FIXME in the test case that mentions the ARCMigration tool
failures when I tried to make that change.
llvm-svn: 227356
This causes things like assignment to refer to the '=' rather than the
LHS when attributing the store instruction, for example.
There were essentially 3 options for this:
* The beginning of an expression (this was the behavior prior to this
commit). This meant that stepping through subexpressions would bounce
around from subexpressions back to the start of the outer expression,
etc. (eg: x + y + z would go x, y, x, z, x (the repeated 'x's would be
where the actual addition occurred)).
* The end of an expression. This seems to be what GCC does /mostly/, and
certainly this for function calls. This has the advantage that
progress is always 'forwards' (never jumping backwards - except for
independent subexpressions if they're evaluated in interesting orders,
etc). "x + y + z" would go "x y z" with the additions occurring at y
and z after the respective loads.
The problem with this is that the user would still have to think
fairly hard about precedence to realize which subexpression is being
evaluated or which operator overload is being called in, say, an asan
backtrace.
* The preferred location or 'exprloc'. In this case you get sort of what
you'd expect, though it's a bit confusing in its own way due to going
'backwards'. In this case the locations would be: "x y + z +" in
lovely postfix arithmetic order. But this does mean that if the op+
were an operator overload, say, and in a backtrace, the backtrace will
point to the exact '+' that's being called, not to the end of one of
its operands.
(actually the operator overload case doesn't work yet for other reasons,
but that's being fixed - but this at least gets scalar/complex
assignments and other plain operators right)
llvm-svn: 227027
This workaround was to provide unique call sites to ensure LLVM's inline
debug info handling would properly unique two calls to the same function
on the same line. Instead, this has now been fixed in LLVM (r226736) and
the workaround here can be removed.
Originally committed in r176895, but this isn't a straight revert due to
all the changes since then. I just searched for anything ForcedColumn*
related and removed them.
We could test this - but it didn't strike me as terribly valuable once
we're no longer adding this workaround everything just works as expected
& it's no longer a special case to test for.
llvm-svn: 226738
The code setting the debug location being removed here was accidentally
leaking a location into the call to the non-static data member's ctor
call. Without it the call had no location and could cause assertion
failures if it was inlined. Now that it has a location (and a correct
one at that) this code should hopefully be no longer needed.
It's possible of course that other parts of the debug info are also
relying on the debug locations being set here to leak to where they're
needed - so we might see the same assertions again & will have to
investigate what the dependence was/is. But the chances are good that
any of those are debug info line table quality bugs we've just not found
yet anyway - so it'll be good to flush them out.
llvm-svn: 226383
Several pieces of code were relying on implicit debug location setting
which usually lead to incorrect line information anyway. So I've fixed
those (in r225955 and r225845) separately which should pave the way for
this commit to be cleanly reapplied.
The reason these implicit dependencies resulted in crashes with this
patch is that the debug location would no longer implicitly leak from
one place to another, but be set back to invalid. Once a call with
no/invalid location was emitted, if that call was ever inlined it could
produce invalid debugloc chains and assert during LLVM's codegen.
There may be further cases of such bugs in this patch - they're hard to
flush out with regression testing, so I'll keep an eye out for reports
and investigate/fix them ASAP if they come up.
Original commit message:
Reapply "DebugInfo: Generalize debug info location handling"
Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Recommitted in r224941 and reverted in r224970 after it caused a crash
when building compiler-rt. Looks to be due to this change zeroing out
the debug location when emitting default arguments (which were meant to
inherit their outer expression's location) thus creating call
instructions without locations - these create problems for inlining and
must not be created. That is fixed and tested in this version of the
change.
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 225956
This reverts commit r225000, r225021, r225083, r225086, r225090.
The root change (r225000) still has several issues where it's caused
calls to be emitted without debug locations. This causes assertion
failures if/when those calls are inlined.
I'll work up some test cases and fixes before recommitting this.
llvm-svn: 225555
PR22096 has several test cases that assert that look fairly different. I'm
adding one of those as an automated test, but when relanding the other cases
should probably be checked as well.
llvm-svn: 225361
r225000 generalized debug info line info handling for expressions such
that this code is no longer necessary.
This removes the last use of CGDebugInfo::getLocation, but not all the
uses of CGDebugInfo::CurLoc, which is still used internally in
CGDebugInfo. I'd like to do away with all of that & might succeed after
a few more patches.
llvm-svn: 225085
The optimization (that appears to have been here since the earliest
implementation (r50848) & has become more complicated over the years) to
avoid recreating the debugloc if it would be the same was out of date
because ApplyDebugLocation was not re-updating the CurLoc/PrevLoc. This
optimization doesn't look terribly beneficial/necessary, so I'm removing
it - if it turns up in benchmarks, I'm happy to reconsider/reimplement
this with justification, but for now it just seems to add
complexity/problems.
llvm-svn: 225083
Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Recommitted in r224941 and reverted in r224970 after it caused a crash
when building compiler-rt. Looks to be due to this change zeroing out
the debug location when emitting default arguments (which were meant to
inherit their outer expression's location) thus creating call
instructions without locations - these create problems for inlining and
must not be created. That is fixed and tested in this version of the
change.
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 225000
Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 224941
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 224385
When emitting nested block definitions, the insert-at-point variant of
DIBuilder::insertDeclare() could be called with the insertion point set
to the end-of-BasicBlock sentinel, causing the parent pointer of the
CallInst to be set to the intentionally bogus value of the sentinel.
Fixed by conditionally invoking the correct version of insertDeclare().
rdar://problem/19034882
llvm-svn: 222487
Currently this function would return nothing for functions or globals that
haven't seen a definition yet. Make it return a forward declaration that will
get RAUWed with the definition if one is seen at a later point. The strategy
used to implement this is similar to what's done for types: the forward
declarations are stored in a vector and post processed upon finilization to
perform the required RAUWs.
For now the only user of getDeclarationOrDefinition() is EmitUsingDecl(), thus
this patch allows to emit correct imported declarations even in the absence of
an actual definition of the imported entity.
(Another user will be the debug info generation for argument default values
that I need to resurect).
Differential Revision: http://reviews.llvm.org/D6173
llvm-svn: 222220
Most of the debug info emission is powered essentially from function
definitions - if we emit the definition of a function, we emit the types
of its parameters, the members of those types, and so on and so forth.
For types that aren't referenced even indirectly due to this - because
they only appear in temporary expressions, not in any named variable, we
need to explicitly emit/add them as is done here. This is not the only
case of such code, and we might want to consider handling "void
func(void*); ... func(new T());" (currently debug info for T is not
emitted) at some point, though GCC doesn't. There's a much broader
solution to these issues, but it's a lot of work for possibly marginal
gain (but might help us improve the default -fno-standalone-debug
behavior to be even more aggressive in some places). See the original
review thread for more details.
Patch by jyoti allur (jyoti.yalamanchili@gmail.com)!
Differential Revision: http://reviews.llvm.org/D2498
llvm-svn: 218390
Due to the possible presence of return-by-out parameters, using the LLVM
argument number count when numbering debug info arguments can end up
off-by-one. This could produce two arguments with the same number, which
would in turn cause LLVM to emit only one of those arguments (whichever
it found last) or assert (r215157).
llvm-svn: 215227
Reverting r208106 to reapply r208065 with a fix for the regression. The
issue was that the enum tried to be built even if the declaration hadn't
been constructed for debug info - presenting problems for enum templates
and typedefs of enums with names for linkage purposes.
Original commit message:
This regressed a little further 208055 though it was already a little
broken.
While the requiresCompleteType optimization should be implemented here.
Future (possibly near future) work.
llvm-svn: 208114
This regressed a little further 208055 though it was already a little
broken.
While the requiresCompleteType optimization should be implemented here.
Future (possibly near future) work.
llvm-svn: 208065
CGDebugInfo and DIBuilder were lax in their handling of temporary
MDNodes. All temporary nodes need to be deleted, which means they need
to be RAUW'd with a permanent node. This was not happening.
To ensure this, leverage DIBuilder's new ability to create both
permanent and temporary declarations. Ensure all temporary declarations
are RAUW'd, even with itself. (DIDescriptor::RAUW handles the case where
it is replaced with itself and creates a new, duplicate permanent node
to replace itself with)
This means that all temporary declarations must be added to the
ReplacementMap even if they're never upgraded to definitions - so move
the point of insertion into the map to the point of creation of the
declarations.
llvm-svn: 208055
This takes a different approach than the
completedType/requiresCompleteType work which relies on AST callbacks to
upgrade the type declaration to a definition. Instead, just defer
constructing the definition to the end of the translation unit.
This works because the definition is never needed by other debug info
(so far as I know), whereas the definition of a struct may be needed by
other debug info before the end of the translation unit (such as
emitting the definition of a member function which must refer to that
member function's declaration).
If we had a callback for whenever an IVar was added to an ObjC interface
we could use that, and remove the need for the ObjCInterfaceCache, which
might be nice. (also would need a callback for when it was more than
just a declaration so we could get properties, etc).
A side benefit is that we also don't need the CompletedTypeCache
anymore. Just rely on the declaration-ness of a type to decide whether
its definition is yet to be emitted.
There's still the PR19562 memory leak, but this should hopefully make
that a bit easier to approach.
llvm-svn: 208015
are not associated with any source lines.
Previously, if the Location of a Decl was empty, EmitFunctionStart would
just keep using CurLoc, which would sometimes be correct (e.g., thunks)
but in other cases would just point to a hilariously random location.
This patch fixes this by completely eliminating all uses of CurLoc from
EmitFunctionStart and rather have clients explicitly pass in a
SourceLocation for the function header and the function body.
rdar://problem/14985269
llvm-svn: 205999
sure that a debugger can find them when stepping through code,
for example from the included testcase:
12 int test_it() {
13 c = 1;
14 d = 2;
-> 15 a = 4;
16 return (c == 1);
17 }
18
(lldb) p a
(int) $0 = 2
(lldb) p c
(int) $1 = 2
(lldb) p d
(int) $2 = 2
and a, c, d are all part of the file static anonymous union:
static union {
int c;
int d;
union {
int a;
};
struct {
int b;
};
};
Fixes PR19221.
llvm-svn: 205952
We already got the type alias correct (though I've included a test case
here) since Clang represents that like any other typedef - but type
alias templates weren't being handled.
llvm-svn: 205691
We should only have this optimization fire when the explicit
instantiation definition would cause at least one member function to be
emitted, thus ensuring that even a compiler not performing this
optimization would still emit the full type information elsewhere.
But we should also pessimize output still by always emitting the
definition when the explicit instantiation definition appears so that at
some point in the future we can depend on that information even when no
code had to be emitted in that TU. (this shouldn't happen very often,
since people mostly use explicit spec decl/defs to reduce code size -
but perhaps one day they could use it to explicitly reduce debug info
size too)
This was worth about 2% for Clang and LLVM - so not a huge win, but a
win. It looks really great for simple STL programs (include <string> and
just declare a string - 14k -> 1.4k of .dwo)
llvm-svn: 202769
class and use it pervasively to restore debug locations.
Fixes an interaction between cleanup and EH that caused the location
to not be restored properly after emitting a landing pad.
rdar://problem/15208190
llvm-svn: 199444
C and C++ don't emit an extra lexical scope for the compound statement
that is the body of an Objective-C method.
rdar://problem/15010825
llvm-svn: 198699
GCC ToT doesn't do this & it's worth about 3.2% on Clang's DWO file size
with Clang. Some or all of this may be due to things like r190715 which
could have source fixes/improvements, but it's not clear that's the case
and that doesn't help other source bases.
llvm-svn: 190716
Debug info emission was tripping over an IRGen bug (fixed in r189996)
that was resulting in duplicate emission of static data members of class
templates in namespaces.
We could add more test coverage to debug info for this issue
specifically, but I think the underlying IRGen test is more targeted and
sufficient for the issue.
llvm-svn: 190001
Both functions will take a Type pointer instead of a Decl pointer. This helps
with follow-up type uniquing patches, which need the Type pointer to call
CXX mangler to generate unique identifiers.
No functionality change.
llvm-svn: 189519
This reverts commit r188687 (reverts r188642 (reverts 188600 (reverts
188576))).
With added test coverage & fix for -gline-tables-only.
Thanks Michael Gottesman for reverting this patch when it demonstrated
problems & providing a reproduction/details to help me track this down.
llvm-svn: 188739
This reverts commit r188642.
This change is causing LTO builds to cause our 16 GB machines to swap and OOM
all weekend. I am going to work with Dave Blaikie to resolve the issue.
Sorry Dave =(.
llvm-svn: 188687
This reverts commit r188600.
r188640/r188639 fixed the root cause of the crash-on-valid that r188600
originally introduced. This now appears to bootstrap debug clang
successfully to the best of my testing.
llvm-svn: 188642
Possible minor reduction in debug info & avoid some cases where creating
a context chain could lead to the type the context chain is being
created for, being created. (this is still possible with template
parameters - tests/fixes/improvements to follow)
llvm-svn: 188639
Rather than going through the whole getOrCreateType machinery to
manifest a type, cut straight to the implementation because we know we
have to do work.
While the previous implementation was sufficient for the two cases
(completeness and required completeness) we have already (the general
machinery could inspect the type for those attributes & go down the full
definition path), a pending change (to emit info for types when we emit
their vtables) won't have that luxury & we'll need to force the creation
rather than relying on the general purpose routine.
llvm-svn: 188486