inconsistent situations if we do, and they are not important for PCH performance
(which currently only needs the stats to construct the initial FileManager
entries).
- No test case, sorry, the machinations are too involved.
This occurs when, for example, the build makes a PCH file and has a header map
or a -I for a directory that does not yet exist. It is possible we will cache
the negative stat on that directory, and then in the build we will never find
header files inside that dir.
For PCH we don't need these stats anyway for performance, so this also makes PCH
files smaller w/ no loss. I hope to eventually eliminate the stat cache
entirely.
llvm-svn: 91082
files.
- The issue is that PCH uses a stat cache, which may reference files which have
been deleted or moved. In such cases ContentCache::getBuffer was returning 0
but most clients are incapable of dealing with this (i.e., they don't).
For the time being, resolve this issue by just making up some invalid file
contents and. Eventually we should detect that we are in an inconsistent
situation and error out with a nice message that the PCH is out of date.
llvm-svn: 90699
http://llvm.org/viewvc/llvm-project?view=rev&revision=71086
Note - This commit only includes the fix for:
<rdar://problem/6309338> slightly different error message format for Visual Studio.
The fix for <rdar://problem/6845623> from protocol to template. is separate/forthcoming.
llvm-svn: 90642
file. This is accomplished by introducing the notion of a "virtual"
file into the file manager, which provides a FileEntry* for a named
file whose size and modification time are known but which may not
exist on disk.
Added a cute little test that remaps both a .c file and a .h file it
includes to alternative files.
llvm-svn: 90329
files with the contents of an arbitrary memory buffer. Use this new
functionality to drastically clean up the way in which we handle file
truncation for code-completion: all of the truncation/completion logic
is now encapsulated in the preprocessor where it belongs
(<rdar://problem/7434737>).
llvm-svn: 90300
The later assumption is patently false, but this was already broken -- this situation is conceptually impossible, my feeling is we should fix SourceManager and friends to make it impossible in practice as well. However, we need to fix PR5662 and perhaps some other things involving memory buffers first. In the short term I'm pretty sure this is reliable.
Chris, Argiris, is this going to break anything that wasn't already broken?
llvm-svn: 90280
in diagnostics when we fail to open a file. This allows us to
report things like:
$ clang test.c -I.
test.c:2:10: fatal error: error opening file './foo.h': Permission denied
#include "foo.h"
^
llvm-svn: 90276
pass them down into the ArgToStringFn implementation. This allows
redundancy across operands to a diagnostic to be eliminated.
This isn't used yet, so no functionality change.
llvm-svn: 84602
only supporting a single stat cache. The immediate benefit of this
change is that we can now generate a PCH/AST file when including
another PCH file; in the future, the chain of stat caches will likely
be useful with multiple levels of PCH files.
llvm-svn: 84263
1) -fwritable-string does affect the non-utf16 version of cfstrings
just not the utf16 ones.
2) utf16 strings should always be marked constant, as the __TEXT segment
is readonly.
3) The name of the global doesn't matter, remove it from TargetInfo.
4) Trust the asmprinter to drop cstrings into the right section, like llvmgcc does now.
This fixes rdar://7115750
llvm-svn: 84077
what we found when we looked into <blah>", where <blah> is a
DeclContext*. We can now format DeclContext*'s in nice ways, e.g.,
"namespace N", "the global namespace", "'class Foo'".
This is part of PR3990, but we're not quite there yet.
llvm-svn: 84028
-code-completion-at=filename:line:column
which performs code completion at the specified location by truncating
the file at that position and enabling code completion. This approach
makes it possible to run multiple tests from a single test file, and
gives a more natural command-line interface.
llvm-svn: 82571
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
llvm-svn: 82166
- Change TargetData string to match llvm-gcc.
- Some -target-abi support for 'apcs-gnu', most importantly the alignment of double and long long changes.
llvm-svn: 81732
qualified name does not actually refer into a class/class
template/class template partial specialization.
Improve printing of nested-name-specifiers to eliminate redudant
qualifiers. Also, make it possible to output a nested-name-specifier
through a DiagnosticBuilder, although there are relatively few places
that will use this leeway.
llvm-svn: 80056
1. Passing something that isn't a string used to cause:
"argument to annotate attribute was not a string literal"
make it say "section attribute" instead.
2. Fix the location of the above message to point to the
bad argument instead of the section token.
3. Implement rdar://4341926, by diagnosing invalid section
specifiers in the frontend rather than letting them slip all
the way to the assembler (a QoI win).
An example of #3 is that we used to produce something like this:
/var/folders/n7/n7Yno9ihEm894640nJdSQU+++TI/-Tmp-//ccFPFGtT.s:2:Expected comma after segment-name
/var/folders/n7/n7Yno9ihEm894640nJdSQU+++TI/-Tmp-//ccFPFGtT.s:2:Rest of line ignored. 1st junk character valued 46 (.).
Daniel improved clang to use llvm_report_error, so now we got:
$ clang t.c -c
fatal error: error in backend: Global variable 'x' has an invalid section specifier 'sadf': mach-o section specifier
requires a segment and section separated by a comma.
with no loc info. Now we get:
$ clang t.c -fsyntax-only
t.c:4:30: error: argument to 'section' attribute is not valid for this target: mach-o section specifier requires a segment
and section separated by a comma
int x __attribute__((section("sadf")));
^
which is nice :)
llvm-svn: 78586