Extend OpDSL with a `defines` method that can set the `hasCanonicalizer` flag for an OpDSL operation. If the flag is set via `defines(Canonicalizer)` the operation needs to implement the `getCanonicalizationPatterns` method. The revision specifies the flag for linalg.fill_tensor and adds an empty `FillTensorOp::getCanonicalizationPatterns` implementation.
This revision is a preparation step to replace linalg.fill by its OpDSL counterpart linalg.fill_tensor. The two are only functionally equivalent if both specify the same canonicalization patterns. The revision is thus a prerequisite for the linalg.fill replacement.
Depends On D120725
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D120726
The current StandardToLLVM conversion patterns only really handle
the Func dialect. The pass itself adds patterns for Arithmetic/CFToLLVM, but
those should be/will be split out in a followup. This commit focuses solely
on being an NFC rename.
Aside from the directory change, the pattern and pass creation API have been renamed:
* populateStdToLLVMFuncOpConversionPattern -> populateFuncToLLVMFuncOpConversionPattern
* populateStdToLLVMConversionPatterns -> populateFuncToLLVMConversionPatterns
* createLowerToLLVMPass -> createConvertFuncToLLVMPass
Differential Revision: https://reviews.llvm.org/D120778
The revision renames the following OpDSL functions:
```
TypeFn.cast -> TypeFn.cast_signed
BinaryFn.min -> BinaryFn.min_signed
BinaryFn.max -> BinaryFn.max_signed
```
The corresponding enum values on the C++ side are renamed accordingly:
```
#linalg.type_fn<cast> -> #linalg.type_fn<cast_signed>
#linalg.binary_fn<min> -> #linalg.binary_fn<min_signed>
#linalg.binary_fn<max> -> #linalg.binary_fn<max_signed>
```
Depends On D120110
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D120562
The revision extends OpDSL with unary and binary function attributes. A function attribute, makes the operations used in the body of a structured operation configurable. For example, a pooling operation may take an aggregation function attribute that specifies if the op shall implement a min or a max pooling. The goal of this revision is to define less and more flexible operations.
We may thus for example define an element wise op:
```
linalg.elem(lhs, rhs, outs=[out], op=BinaryFn.mul)
```
If the op argument is not set the default operation is used.
Depends On D120109
Reviewed By: nicolasvasilache, aartbik
Differential Revision: https://reviews.llvm.org/D120110
Split arithmetic function into unary and binary functions. The revision prepares the introduction of unary and binary function attributes that work similar to type function attributes.
Depends On D120108
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D120109
Index attributes had no default value, which means the attribute values had to be set on the operation. This revision adds a default parameter to `IndexAttrDef`. After the change, every index attribute has to define a default value. For example, we may define the following strides attribute:
```
```
When using the operation the default stride is used if the strides attribute is not set. The mechanism is implemented using `DefaultValuedAttr`.
Additionally, the revision uses the naming index attribute instead of attribute more consistently, which is a preparation for follow up revisions that will introduce function attributes.
Depends On D119125
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D119126
Previously, OpDSL did not support rank polymorphism, which required a separate implementation of linalg.fill. This revision extends OpDSL to support rank polymorphism for a limited class of operations that access only scalars and tensors of rank zero. At operation instantiation time, it scales these scalar computations to multi-dimensional pointwise computations by replacing the empty indexing maps with identity index maps. The revision does not change the DSL itself, instead it adapts the Python emitter and the YAML generator to generate different indexing maps and and iterators depending on the rank of the first output.
Additionally, the revision introduces a `linalg.fill_tensor` operation that in a future revision shall replace the current handwritten `linalg.fill` operation. `linalg.fill_tensor` is thus only temporarily available and will be renamed to `linalg.fill`.
Reviewed By: nicolasvasilache, stellaraccident
Differential Revision: https://reviews.llvm.org/D119003
The revision distinguishes `ReduceFn` and `ReduceFnUse`. The latter has the reduction dimensions attached while the former specifies the arithmetic function only. This separation allows us to adapt the reduction syntax a little bit and specify the reduction dimensions using square brackets (in contrast to the round brackets used for the values to reduce). It als is a preparation to add reduction function attributes to OpDSL. A reduction function attribute shall only specify the arithmetic function and not the reduction dimensions.
Example:
```
ReduceFn.max_unsigned(D.kh, D.kw)(...)
```
changes to:
```
ReduceFn.max_unsigned[D.kh, D.kw](...)
```
Depends On D115240
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D115241
The revision renames `PrimFn` to `ArithFn`. The name resembles the newly introduced arith dialect that implements most of the arithmetic functions. An exception are log/exp that are part of the math dialect.
Depends On D115239
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D115240
This revision introduces a the `TypeFn` class that similar to the `PrimFn` class contains an extensible set of type conversion functions. Having the same mechanism for both type conversion functions and arithmetic functions improves code consistency. Additionally, having an explicit function class and function name is a prerequisite to specify a conversion or arithmetic function via attribute. In a follow up commits, we will introduce function attributes to make OpDSL operations more generic. In particular, the goal is to handle signed and unsigned computation in one operations. Today, there is a linalg.matmul and a linalg.matmul_unsigned.
The commit implements the following changes:
- Introduce the class of type conversion functions `TypeFn`
- Replace the hardwired cast and cast_unsigned ops by the `TypeFn` counterparts
- Adapt the python and C++ code generation paths to support the new cast operations
Example:
```
cast(U, A[D.m, D.k])
```
changes to
```
TypeFn.cast(U, A[D.m, D.k])
```
Depends On D115237
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D115239
Renaming `AttributeDef` to `IndexAttrDef` prepares OpDSL to support different kinds of attributes and more closely reflects the purpose of the attribute.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D115237
Remove the RangeOp and the RangeType that are not actively used anymore. After removing RangeType, the LinalgTypes header only includes the generated dialect header.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D115727
Precursor: https://reviews.llvm.org/D110200
Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.
Renamed all instances of operations in the codebase and in tests.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D110797
Move the OpDSL doc to a linalg sub folder and updated the integration in the main linalg documentation.
Differential Revision: https://reviews.llvm.org/D105188