zextOrTrunc(), and APSInt methods extend(), extOrTrunc() and new method
trunc(), to be const and to return a new value instead of modifying the
object in place.
llvm-svn: 121121
cv-qualification conversions. More specifically, there's an implicit
cv-qualification conversion (even one that drops qualifiers) when
converting to 'id' or qualified 'id'. Fixes <rdar://problem/8734046>.
llvm-svn: 121047
FunctionArrayLvalueConversion but without the function/array decay. Generally
this is only appropriate for use sites that know the type of the expression
and thus that it can't be subject to the decays.
Also make sure we do lvalue-to-rvalue on the bases of ivar references.
llvm-svn: 121035
My previous attempt at solving the compile-time problem with many
redeclarations of the same entity cached both linkage and visibility,
while this patch only tackles linkage. There are several reasons for
this difference:
- Linkage is a language concept, and is evaluated many times during
semantic analysis and codegen, while visibility is only a
code-generation concept that is evaluated only once per (unique)
declaration. Hence, we *must* optimize linkage calculations but
don't need to optimize visibility computation.
- Once we know the linkage of a declaration, subsequent
redeclarations can't change that linkage. Hence, cache
invalidation is far simpler than for visibility, where a later
redeclaration can completely change the visibility.
- We have 3 spare bits in Decl to store the linkage cache, so the
cache doesn't increase the size of declarations. With the
visibility+linkage cache, NamedDecl got larger.
llvm-svn: 121023
and visibility of declarations, because it was extremely messy and it
increased the size of NamedDecl.
An improved implementation is forthcoming.
llvm-svn: 121012
so that's not a valid thing to do at all. Instead, switch to a ValueDecl
argument, the template isn't really necessary here.
When handling the types explicitly in the code, it becomes awkward to cerate
the CXXBaseOrMemberInitializer object in so many places. Re-flow the code to
calculate the Init expression first, and then create the initializer. If this
is too gross, we can factor the init expression logic into helper functions,
but it's not past my threshold yet.
llvm-svn: 120997
the LHS, or else the pointer might be invalid. This is kindof dumb, but
go ahead and make sure we're doing that for l-value scalar assignment,
which fixes a miscompile of obj-c++.dg/block-seq.mm.
Leave a FIXME for how to solve this problem for agg __blocks.
llvm-svn: 120992
build one when either of the operands calls itself type-dependent;
previously we were building when one of the operand types was dependent,
which is not always the same thing and which can lead to unfortunate
inconsistencies later. Fixes PR8739.
llvm-svn: 120990
Fix a bug in the emission of complex compound assignment l-values.
Introduce a method to emit an expression whose value isn't relevant.
Make that method evaluate its operand as an l-value if it is one.
Fixes our volatile compliance in C++.
llvm-svn: 120931
struct X {
X() : au_i1(123) {}
union {
int au_i1;
float au_f1;
};
};
clang will now deal with au_i1 explicitly as an IndirectFieldDecl.
llvm-svn: 120900
not actually frequently used, because ImpCastExprToType only creates a node
if the types differ. So explicitly create an ICE in the lvalue-to-rvalue
conversion code in DefaultFunctionArrayLvalueConversion() as well as several
other new places, and consistently deal with the consequences throughout the
compiler.
In addition, introduce a new cast kind for loading an ObjCProperty l-value,
and make sure we emit those nodes whenever an ObjCProperty l-value appears
that's not on the LHS of an assignment operator.
This breaks a couple of rewriter tests, which I've x-failed until future
development occurs on the rewriter.
Ted Kremenek kindly contributed the analyzer workarounds in this patch.
llvm-svn: 120890
Also, move the l-value emission code into CGObjC.cpp and teach it, for
completeness, to store away self for a super send.
Also, inline the super cases for property gets and sets and make them
use the correct result type for implicit getter/setter calls.
llvm-svn: 120887
This patch refactors the CompilerInvocation code to introduce a
CompilerInvocation::setLangDefaults function, which can set up a
LangOptions with the defaults for a given language and language
standard. This function is useful for non-command line based Clang
clients which need to set up a CompilerInvocation manually for a
specific language.
llvm-svn: 120874
declarations.
The motivation for this patch is that linkage/visibility computations
are linear in the number of redeclarations of an entity, and we've run
into a case where a single translation unit has > 6500 redeclarations
of the same (unused!) external variable. Since each redeclaration
involves a linkage check, the resulting quadratic behavior makes Clang
slow to a crawl. With this change, a simple test with 512
redeclarations of a variable syntax-checks ~20x faster than
before.
That said, I hate this change, and will probably end up reverting it
in a few hours. Reasons to hate it:
- It makes NamedDecl larger, since we don't have enough free bits in
Decl to squeeze in the extra information about caching.
- There are way too many places where we need to invalidate this
cache, because the visibility of a declaration can change due to
redeclarations (!). Despite self-hosting and passing the testsuite,
I have no confidence that I've found all of places where this cache
needs to be invalidated.
llvm-svn: 120808
a node in the trimmed graph might not always
correctly map back to the original error node.
This could cause a crash in some cases when
flagging memory leaks.
llvm-svn: 120795
about deprecated Objective-C pointer conversions. Plus, make sure to
actually set an appropriate AssignmentAction when performing an
implicit conversion from an InitializationSequence. Fixes regressions
in the GCC DejaGNU testsuite.
llvm-svn: 120744
when an initializer is variable (I handled the constant case in a previous
patch). This has three pieces:
1. Enhance AggValueSlot to have a 'isZeroed' bit to tell CGExprAgg that
the memory being stored into has previously been memset to zero.
2. Teach CGExprAgg to not emit stores of zero to isZeroed memory.
3. Teach CodeGenFunction::EmitAggExpr to scan initializers to determine
whether they are profitable to emit a memset + inividual stores vs
stores for everything.
The heuristic used is that a global has to be more than 16 bytes and
has to be 3/4 zero to be candidate for this xform. The two testcases
are illustrative of the scenarios this catches. We now codegen test9 into:
call void @llvm.memset.p0i8.i64(i8* %0, i8 0, i64 400, i32 4, i1 false)
%.array = getelementptr inbounds [100 x i32]* %Arr, i32 0, i32 0
%tmp = load i32* %X.addr, align 4
store i32 %tmp, i32* %.array
and test10 into:
call void @llvm.memset.p0i8.i64(i8* %0, i8 0, i64 392, i32 8, i1 false)
%tmp = getelementptr inbounds %struct.b* %S, i32 0, i32 0
%tmp1 = getelementptr inbounds %struct.a* %tmp, i32 0, i32 0
%tmp2 = load i32* %X.addr, align 4
store i32 %tmp2, i32* %tmp1, align 4
%tmp5 = getelementptr inbounds %struct.b* %S, i32 0, i32 3
%tmp10 = getelementptr inbounds %struct.a* %tmp5, i32 0, i32 4
%tmp11 = load i32* %X.addr, align 4
store i32 %tmp11, i32* %tmp10, align 4
Previously we produced 99 stores of zero for test9 and also tons for test10.
This xforms should substantially speed up -O0 builds when it kicks in as well
as reducing code size and optimizer heartburn on insane cases. This resolves
PR279.
llvm-svn: 120692
a global is larger than 32 bytes and has fewer than 6 non-zero values in the
initializer. Previously we'd turn something like this:
char test8(int X) {
char str[10000] = "abc";
into a 10K global variable which we then memcpy'd from. Now we generate:
%str = alloca [10000 x i8], align 16
%tmp = getelementptr inbounds [10000 x i8]* %str, i64 0, i64 0
call void @llvm.memset.p0i8.i64(i8* %tmp, i8 0, i64 10000, i32 16, i1 false)
store i8 97, i8* %tmp, align 16
%0 = getelementptr [10000 x i8]* %str, i64 0, i64 1
store i8 98, i8* %0, align 1
%1 = getelementptr [10000 x i8]* %str, i64 0, i64 2
store i8 99, i8* %1, align 2
Which is much smaller in space and also likely faster.
This is part of PR279
llvm-svn: 120645
Check for compatible gcc, Altivec and Neon vectors before handling the
lax-vector-conversions case. Otherwise there is no way to avoid the
warnings from -Wvector-conversions.
llvm-svn: 120633
definition of an Objective-C class. Unlike with C/C++ classes, we
don't have a well-defined point in Sema where Objective-C classes are
checked for completeness, nor do we need to involve Sema when
completing a class. Therefore, we take the appropriate of having the
external AST source mark a particular Objective-C class as having an
external declaration; when using one of the accessors of an
Objective-C class that has an external declaration, we request that
the external AST source fill in the Objective-C class definition.
llvm-svn: 120627
conversions. Previously, we would end up collapsing qualification
conversions into the Objective-C pointer conversion step, including
(possibly) stripping qualifiers that shouldn't be removed.
This generalizes BuildSimilarlyQualifiedPointerType() to also work on
Objective-C object pointers, then eliminates the (redundant, not
totally correct) BuildSimilarlyQualifiedObjCObjectPointerType()
function.
Fixes <rdar://problem/8714395>.
llvm-svn: 120607
instantiations, GCC also supports "inline" and "static" explicit
template instantiations. Parse and warn about such constructs, but
don't implement the semantics of either "inline" or "static". They
don't seem to be widely used.
llvm-svn: 120599