Some FormatElement subclasses contain `std::vector`. Since these use
BumpPtrAllocator, they need to be converted to trailing objects.
However, this is not a trivial fix so I will leave it as a FIXME and use
a workaround.
Part 2 of 3 of unifying the assembly formats of attributes/types and operations.The last patch that introduced attribute/type formats (D111594) factored out the format lexer entirely. This patch factors out most of the format parsers such that the attribute/type and op parsers only need to implement handling for specific elements.
Certain things could be factored better (element verification, 'seen' variables) but the primary goal of factoring is so that features can be used across both assembly formats.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D117971
This patch introduces a new directive that allow to parse/print attributes and types fully
qualified.
This is a follow-up to ee0908703d which introduces the eliding of the `!dialect.mnemonic` by default and allows to force to fully qualify each type/attribute
individually.
Differential Revision: https://reviews.llvm.org/D116905
Declarative attribute and type formats with assembly formats. Define an
`assemblyFormat` field in attribute and type defs with a `mnemonic` to
generate a parser and printer.
```tablegen
def MyAttr : AttrDef<MyDialect, "MyAttr"> {
let parameters = (ins "int64_t":$count, "AffineMap":$map);
let mnemonic = "my_attr";
let assemblyFormat = "`<` $count `,` $map `>`";
}
```
Use `struct` to define a comma-separated list of key-value pairs:
```tablegen
def MyType : TypeDef<MyDialect, "MyType"> {
let parameters = (ins "int":$one, "int":$two, "int":$three);
let mnemonic = "my_attr";
let assemblyFormat = "`<` $three `:` struct($one, $two) `>`";
}
```
Use `struct(*)` to capture all parameters.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D111594