The full GSYM patch started with: https://reviews.llvm.org/D53379
In that patch we wanted to split up getting GSYM into the LLVM code base so we are not committing too much code at once.
This is a first in a series of patches where I only add the foundation classes along with complete unit tests. They provide the foundation for encoding and decoding a GSYM file.
File entries are defined in llvm::gsym::FileEntry. This class splits the file up into a directory and filename represented by uniqued string table offsets. This allows all files that are referred to in a GSYM file to be encoded as 1 based indexes into a global file table in the GSYM file.
Function information in stored in llvm::gsym::FunctionInfo. This object represents a contiguous address range that has a name and range with an optional line table and inline call stack information.
Line table entries are defined in llvm::gsym::LineEntry. They store only address, file and line information to keep the line tables simple and allows the information to be efficiently encoded in a subsequent patch.
Inline information is defined in llvm::gsym::InlineInfo. These structs store the name of the inline function, along with one or more address ranges, and the file and line that called this function. They also contain any child inline information.
There are also utility classes for address ranges in llvm::gsym::AddressRange, and string table support in llvm::gsym::StringTable which are simple classes.
The unit tests test all the APIs on these simple classes so they will be ready for the next patches where we will create GSYM files and parse GSYM files.
Differential Revision: https://reviews.llvm.org/D63104
llvm-svn: 364427
Previously this change was submitted from a Windows machine, so
changes made to the case of filenames and directory names did
not survive the commit, and as a result the CMake source file
names and the on-disk file names did not match on case-sensitive
file systems.
I'm resubmitting this patch from a Linux system, which hopefully
allows the case changes to make it through unfettered.
llvm-svn: 277213
In a previous patch, it was suggested to use all caps instead of
rolling caps for initialisms, so this patch changes everything
to do this.
llvm-svn: 277190
This provides a better layering of responsibilities among different
aspects of PDB writing code. Some of the MSF related code was
contained in CodeView, and some was in PDB prior to this. Further,
we were often saying PDB when we meant MSF, and the two are
actually independent of each other since in theory you can have
other types of data besides PDB data in an MSF. So, this patch
separates the MSF specific code into its own library, with no
dependencies on anything else, and DebugInfoCodeView and
DebugInfoPDB take dependencies on DebugInfoMsf.
llvm-svn: 276458
Summary: This diff is the initial implementation of the LLVM CodeView library. There is much more work to be done, namely a CodeView dumper and tests. This patch should help others make progress on the LLVM->CodeView debug info emission while I continue with the implementation of the dumper and tests.
This library implements support for emitting debug info in the CodeView format. This phase of the implementation only includes support for CodeView type records. Clients that need to emit type records will use a class derived from TypeTableBuilder. TypeTableBuilder provides member functions for writing each kind of type record; each of these functions eventually calls the writeRecord virtual function to emit the actual bits of the record. Derived classes override writeRecord to implement the folding of duplicate records and the actual emission to the appropriate destination. LLVMCodeView provides MemoryTypeTableBuilder, which creates the table in memory. In the future, other classes derived from TypeTableBuilder will write to other destinations, such as the type stream in a PDB.
The rest of the types in LLVMCodeView define the actual CodeView type records and all of the supporting enums and other types used in the type records. The TypeIndex class is of particular interest, because it is used by clients as a handle to a type in the type table.
The library provides a relatively low-level interface based on the actual on-disk format of CodeView. For example, type records refer to other type records by TypeIndex, rather than by an actual pointer to the referent record. This allows clients to emit type records one at a time, rather than having to keep the entire transitive closure of type records in memory until everything has been emitted. At some point, having a higher-level interface layered on top of this one may be useful for debuggers and other tools that want a more holistic view of the debug info. The lower-level interface should be sufficient for compilers and linkers to do the debug info manipulation that they need to do efficiently.
Reviewers: rnk, majnemer
Subscribers: silvas, rnk, jevinskie, llvm-commits
Differential Revision: http://reviews.llvm.org/D14961
llvm-svn: 256385
These were originally submitted as part of r228428, but this part
caused a build breakage in LLVMConfig. The library portion was
resubmitted independently since it was not causing breakage.
There were two reasons this was causing the build to fail. The
first is that there were no Makefiles added for the PDB tests. And
the second is that the DebugInfoPDB library was only being built by
CMake behind an "if (MSVC)" check. This is wrong since this the
library hides platform specific details, and it was causing
LLVM-Config to not find the library when trying to build unittests.
llvm-svn: 228482
This change resubmits the patch that broke the build, this time
without unittests. The unittests will be submitted separately
after the problem has been addressed:
--Original Commit Message--
Create lib/DebugInfo/PDB.
This patch creates a platform-independent interface to a PDB reader.
There is currently no implementation of this interface, which will
be provided in future patches. This defines the basic object model
which any implementation must conform to.
Reviewed by: David Blaikie
Differential Revision: http://reviews.llvm.org/D7356
llvm-svn: 228435
This patch creates a platform-independent interface to a PDB reader.
There is currently no implementation of this interface, which will
be provided in future patches. This defines the basic object model
which any implementation must conform to.
Reviewed by: David Blaikie
Differential Revision: http://reviews.llvm.org/D7356
llvm-svn: 228428
In preparation for adding PDB support to LLVM, this moves the
DWARF parsing code to its own subdirectory under DebugInfo, and
renames LLVMDebugInfo to LLVMDebugInfoDWARF.
This is purely a mechanical / build system change.
Differential Revision: http://reviews.llvm.org/D7269
Reviewed by: Eric Christopher
llvm-svn: 227586
The color scheme is the same as the one used by the colorize dwarfdump
script on Darwin.
A new --color option can be used to forcibly turn color on or off.
http://reviews.llvm.org/D6852
llvm-svn: 225269
This reverts commit r221842 which was a revert of r221836 and of the
test parts of r221837.
This new version fixes an UB bug pointed out by David (along with
addressing some other review comments), makes some dumping more
resilient to broken input data and forces the accelerator tables
to be dumped in the tests where we use them (this decision is
platform specific otherwise).
llvm-svn: 222003
This reverts commit r221836.
The tests are asserting on some buildbots. This also reverts the
test part of r221837 as it relies on dwarfdump dumping the
accelerator tables.
llvm-svn: 221842
This is a basic implementation - we still don't have any support (that I
know of) for dumping DWARF expressions in a meaningful way, so the
location information itself is just printed as a sequence of bytes as we
do elsewhere.
llvm-svn: 184361
This is only one half of it, the part that caches address ranges from the DIEs when .debug_aranges is
not available will be ported soon.
llvm-svn: 139680
This introduces a new library to LLVM: libDebugInfo. It will provide debug information
parsing to LLVM. Much of the design and some of the code is taken from the LLDB project.
It also contains an llvm-dwarfdump tool that can dump the abbrevs and DIEs from an
object file. It can be used to write tests for DWARF input and output easily.
llvm-svn: 139627