We previously instantiated type-constraints of template type parameters along with the type parameter itself,
this caused problems when the type-constraints created by abbreviated templates refreneced other parameters
in the abbreviated templates.
When encountering a template type parameter with a type constraint, if it is implicit, delay instantiation of
the type-constraint until the function parameter which created the invented template type parameter is
instantiated.
Reland after fixing bug caused by another flow reaching SubstParmVarDecl and instantiating the TypeConstraint
a second time.
Add support for Master and Critical directive in the OMPIRBuilder. Both make use of a new common interface for emitting inlined OMP regions called `emitInlinedRegion` which was added in this patch as well.
Also this patch modifies clang to use the new directives when `-fopenmp-enable-irbuilder` commandline option is passed.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D72304
bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
This patch depends on the splat analysis enhancement in D73549.
See the test with comment:
; Negative test - mismatched splat elements
...as the motivation for that first patch.
The motivating case for reassociating splatted ops is shown in PR42174:
https://bugs.llvm.org/show_bug.cgi?id=42174
In that example, a slight change in order-of-associative math results
in a big difference in IR and codegen. This patch gets all of the
unnecessary shuffles out of the way, but doesn't address the potential
scalarization (see D50992 or D73480 for that).
Differential Revision: https://reviews.llvm.org/D73703
We previously instantiated type-constraints of template type parameters along with the type parameter itself,
this caused problems when the type-constraints created by abbreviated templates refreneced other parameters
in the abbreviated templates.
When encountering a template type parameter with a type constraint, if it is implicit, delay instantiation of
the type-constraint until the function parameter which created the invented template type parameter is
instantiated.
These can be lowered to code sequences using CMPFP and CMPFPE which then get
selected to VCMP and VCMPE. The implementation isn't fully correct, as the chain
operand isn't handled correctly, but resolving that looks like it would involve
changes around FPSCR-handling instructions and how the FPSCR is modelled.
The fp-intrinsics test was already testing some of this but as the entire test
was being XFAILed it wasn't noticed. Un-XFAIL the test and instead leave the
cases where we aren't generating the right instruction sequences as FIXME.
Differential Revision: https://reviews.llvm.org/D73194
The patterns for converting `std.alloc` and `std.dealoc` can be configured to
use `llvm.alloca` instead of calling `malloc` and `free`. This configuration
has been only possible through a command-line flag, despite the presence of a
(misleading) parameter in the pass constructor. Use the parameter instead and
only initalize it from the command line flags if the pass is constructed from
the mlir-opt registration.
Summary:
ClusterManager is using a SmallPtrSet to store the objects in it. We always only add every object once so using a set is not necessary.
Furthermore having a set means that iterating over it is nondeterministic (at least with more than 16 objects in it), so the order in
which the destructors for the managed objects are called is currently also non-deterministic.
This just replaces the SmallPtrSet with a SmallVector.
Reviewers: labath, JDevlieghere
Reviewed By: labath
Subscribers: mgrang, abidh, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D73871
Summary:
These hooks were originally introduced to support passes deriving the
StandardToLLVM conversion, in particular converting types from different
dialects to LLVM types in a single-step conversion. They are no longer in use
since the pass and conversion infrastructure has evolved sufficiently to make
defining new passes with exactly the same functionality simple through the use
of populate* functions, conversion targets and type converters. Remove the
hooks. Any users of this hooks can call the dialect conversion infrastructure
directly instead, which is likely to require less LoC than these hooks.
Differential Revision: https://reviews.llvm.org/D73795
Previously, if a debug line Prologue was created via
createBasicPrologue, its TotalLength field did not account for any
contents in the table itself. This change fixes this issue.
Reviewed by: probinson
Differential Revision: https://reviews.llvm.org/D73772
Summary:
In big-endian MVE, the simple vector load/store instructions (i.e.
both contiguous and non-widening) don't all store the bytes of a
register to memory in the same order: it matters whether you did a
VSTRB.8, VSTRH.16 or VSTRW.32. Put another way, the in-register
formats of different vector types relate to each other in a different
way from the in-memory formats.
So, if you want to 'bitcast' or 'reinterpret' one vector type as
another, you have to carefully specify which you mean: did you want to
reinterpret the //register// format of one type as that of the other,
or the //memory// format?
The ACLE `vreinterpretq` intrinsics are specified to reinterpret the
register format. But I had implemented them as LLVM IR bitcast, which
is specified for all types as a reinterpretation of the memory format.
So a `vreinterpretq` intrinsic, applied to values already in registers,
would code-generate incorrectly if compiled big-endian: instead of
emitting no code, it would emit a `vrev`.
To fix this, I've introduced a new IR intrinsic to perform a
register-format reinterpretation: `@llvm.arm.mve.vreinterpretq`. It's
implemented by a trivial isel pattern that expects the input in an
MQPR register, and just returns it unchanged.
In the clang codegen, I only emit this new intrinsic where it's
actually needed: I prefer a bitcast wherever it will have the right
effect, because LLVM understands bitcasts better. So we still generate
bitcasts in little-endian mode, and even in big-endian when you're
casting between two vector types with the same lane size.
For testing, I've moved all the codegen tests of vreinterpretq out
into their own file, so that they can have a different set of RUN
lines to check both big- and little-endian.
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73786
Summary:
These instructions generate a vector of consecutive elements starting
from a given base value and incrementing by 1, 2, 4 or 8. The `wdup`
versions also wrap the values back to zero when they reach a given
limit value. The instruction updates the scalar base register so that
another use of the same instruction will continue the sequence from
where the previous one left off.
At the IR level, I've represented these instructions as a family of
target-specific intrinsics with two return values (the constructed
vector and the updated base). The user-facing ACLE API provides a set
of intrinsics that throw away the written-back base and another set
that receive it as a pointer so they can update it, plus the usual
predicated versions.
Because the intrinsics return two values (as do the underlying
instructions), the isel has to be done in C++.
This is the first family of MVE intrinsics that use the `imm_1248`
immediate type in the clang Tablegen framework, so naturally, I found
I'd given it the wrong C integer type. Also added some tests of the
check that the immediate has a legal value, because this is the first
time those particular checks have been exercised.
Finally, I also had to fix a bug in MveEmitter which failed an
assertion when I nested two `seq` nodes (the inner one used to extract
the two values from the pair returned by the IR intrinsic, and the
outer one put on by the predication multiclass).
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73357
Summary:
The unpredicated case of this is trivial: the clang codegen just makes
a vector splat of the input, and LLVM isel is already prepared to
handle that. For the predicated version, I've generated a `select`
between the same vector splat and the `inactive` input parameter, and
added new Tablegen isel rules to match that pattern into a predicated
`MVE_VDUP` instruction.
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73356
Disable the red zone in the unit test allocator to fix the test errors in sanitizer builds.
The red zone changed the amount of allocated bytes which made the test fail as it
checked the number of allocated bytes of the allocator.
This fixes building for mingw with BUILD_SHARED_LIBS. In static builds,
the psapi dependency gets linked in transitively from Support, but
when linking Support dynamically, it's revealed that these components
also need linking against psapi.
Differential Revision: https://reviews.llvm.org/D73839
Summary:
It turns out that CUR_DIRECTION is just an internal placeholder, not an actual
valid encoded value.
Reviewers: gchatelet
Subscribers: tschuett, mstojanovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73343
This reverts commit b848b510a8 as the unit tests
fail on the sanitizer bots:
/b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/unittests/Support/AllocatorTest.cpp:145: Failure
Expected: SlabSize
Which is: 4096
To be equal to: Alloc.getTotalMemory()
Which is: 4097
This reverts commit 41f4dfd63e.
It broke standalone libc++ builds, which now try to use libc++abi from the wrong directory, instead of system instance.
(cherry picked from commit 3573526c0286c9461f0459be1a4592b2214594e7)
Summary:
A Copy with a source that is zeros is the same as a Set of zeros.
This fixes the invariant that SrcAlign should always be non-null.
Reviewers: courbet
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73791
Summary:
We currently do far more malloc calls than necessary in the ConstString BumpPtrAllocator. This is due to the 256 BumpPtrAllocators
our ConstString implementation uses internally which end up all just receiving a small share of the total allocated memory
and therefore keep allocating memory in small chunks for far too long. This patch fixes this by increasing the rate at which we increase the
memory chunk size so that our collection of BumpPtrAllocators behaves in total similar to a single BumpPtrAllocator.
Reviewers: llunak
Reviewed By: llunak
Subscribers: abidh, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71699
Summary: There are no counters for individual ports, but this is already
enough to find a lot of issues in the current model (upcoming patch).
Reviewers: dblaikie, gchatelet
Subscribers: hiraditya, tschuett, RKSimon, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72032
Summary:
D68092 introduced a new SIRemoveShortExecBranches optimization pass and
broke some graphics shaders. The problem is that it was removing
branches over KILL pseudo instructions, and the fix is to explicitly
check for that in mustRetainExeczBranch.
Reviewers: critson, arsenm, nhaehnle, cdevadas, hakzsam
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73771
Summary:
In the original design, gpu.launch required explicit capture of uses
and passing them as operands to the gpu.launch operation. This was
motivated by infrastructure restrictions rather than design. This
change lifts the requirement and removes the concept of kernel
arguments from gpu.launch. Instead, the kernel outlining
transformation now does the explicit capturing.
This is a breaking change for users of gpu.launch.
Differential Revision: https://reviews.llvm.org/D73769
Duplicating instructions can lead to code size increases but using
a threshold of 3 is good for reducing code size.
Differential Revision: https://reviews.llvm.org/D72916
Summary:
In D68549 we noticed that our BumpPtrAllocator we use for LLDB's ConstString implementation is growing its slabs at
a rate that is too slow for our use case. It causes that we spend a lot of time calling `malloc` for all the tiny slabs that our
ConstString BumpPtrAllocators create. We also can't just increase the slab size in the ConstString implementation
(which is what D68549 originally did) as this really increased the amount of (mostly unused) allocated memory
in any process using ConstString.
This patch adds a template argument for the BumpPtrAllocatorImpl that allows specifying a faster rate at which the
BumpPtrAllocator increases the slab size. This allows LLDB to specify a faster rate at which the slabs grow which
should keep both memory consumption and time spent calling malloc low.
Reviewers: george.karpenkov, chandlerc, NoQ
Subscribers: NoQ, llvm-commits, llunak
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71654
Win64 isn't LP64, it's LLP64, but there's no __LLP64__ predefined -
just check _WIN64 in addition to __LP64__.
This fixes compilation after static asserts about the struct layout
were added in f2a436058f.
Differential Revision: https://reviews.llvm.org/D73838