to be fed 4 callbacks: read/write memory, and read/write registers. After this,
you can tell the object to read an instruction. This will cause the class to read
the PC, and read and instruction. Then you can emulate the instruction by calling
EvaluateInstruction. This will cause the class to figure out exactly what an opcode
does, and call the read/write mem/regs functions with actual values which allows one
to emulate an instruction without running a process, or it allows one to watch the
context information (the memory write is a pushing register 3 onto the stack at offset
12) so it can be used for generating call frame information. This way, in the future,
we will have one class that can be used to emulate instructions and generate our
unwind info from assembly.
llvm-svn: 123998
to issue the warning at an uninitialized variable's
declaration, but to issue notes at possible
uninitialized uses (which could be multiple).
llvm-svn: 123994
when returning an NRVO candidate expression. For example, this
properly picks the move constructor when dealing with code such as
MoveOnlyType f() { MoveOnlyType mot; return mot; }
The previously-XFAIL'd rvalue-references test case now works, and has
been moved into the appropriate paragraph-specific test case.
llvm-svn: 123992
1. Fixed ARM pc adjustment.
2. Fixed dynamic-no-pic codegen
3. CSE of pc-relative load of global addresses.
It's now enabled by default for Darwin.
llvm-svn: 123991
NRVO candidate for a return statement, to
Sema::getCopyElisionCandidate(), and teach it enough to also determine
the NRVO candidate for a throw expression. We still don't use the
latter information, however.
Along the way, implement core issue 1148, which eliminates copy
elision from catch parameters and clarifies that copy elision cannot
occur from function parameters (which we already implemented).
llvm-svn: 123982
resolution to match the latest C++0x working paper's semantics. The
implementation now matching up with the reference-binding
implementation used for initialization.
llvm-svn: 123977
qadd and qdadd uses "rd, rm, rn", the same applies to the 'sub' variants. This
is described in ARM manuals and matches the encoding used by the gnu assembler.
llvm-svn: 123975
DAG. Disable using "-disable-sched-cycles".
For ARM, this enables a framework for modeling the cpu pipeline and
counting stalls. It also activates several heuristics to drive
scheduling based on the model. Scheduling is inherently imprecise at
this stage, and until spilling is improved it may defeat attempts to
schedule. However, this framework provides greater control over
tuning codegen.
Although the flag is not target-specific, it should have very little
affect on the default scheduler used by x86. The only two changes that
affect x86 are:
- scheduling a high-latency operation bumps the current cycle so independent
operations can have their latency covered. i.e. two independent 4
cycle operations can produce results in 4 cycles, not 8 cycles.
- Two operations with equal register pressure impact and no
latency-based stalls on their uses will be prioritized by depth before height
(height is irrelevant if no stalls occur in the schedule below this point).
llvm-svn: 123971
select frame #3, you can then do a step out and be able to go directly to the
frame above frame #3!
Added StepOverUntil and StepOutOfFrame to the SBThread API to allow more powerful
stepping.
llvm-svn: 123970
flags. They are still not enable in this revision.
Added TargetInstrInfo::isZeroCost() to fix a fundamental problem with
the scheduler's model of operand latency in the selection DAG.
Generalized unit tests to work with sched-cycles.
llvm-svn: 123969
call (C++0x [temp.deduct.call]p3).
As part of this, start improving the reference-binding implementation
used in the computation of implicit conversion sequences (for overload
resolution) to reflect C++0x semantics. It still needs more work and
testing, of course.
llvm-svn: 123966