Commit Graph

59 Commits

Author SHA1 Message Date
Vitaly Buka a40660551e [StackSafety] Ignore allocas with partial lifetime markers
Reviewed By: eugenis

Differential Revision: https://reviews.llvm.org/D86672
2020-08-27 13:54:41 -07:00
Vitaly Buka 516328860c [safe-stack] Fix typo in test command line 2020-08-17 13:38:39 -07:00
Vitaly Buka e10e7829bf [StackSafety] Skip ambiguous lifetime analysis
If we can't identify alloca used in lifetime marker we
need to assume to worst case scenario.

Reviewed By: eugenis

Differential Revision: https://reviews.llvm.org/D84630
2020-08-16 18:05:52 -07:00
Vedant Kumar 77ffce6954 [Instruction] Set metadata uses to undef on deletion
Summary:
Replace any extant metadata uses of a dying instruction with undef to
preserve debug info accuracy. Some alternatives include:

- Treat Instruction like any other Value, and point its extant metadata
  uses to an empty ValueAsMetadata node. This makes extant dbg.value uses
  trivially dead (i.e. fair game for deletion in many passes), leading to
  stale dbg.values being in effect for too long.

- Call salvageDebugInfoOrMarkUndef. Not needed to make instruction removal
  correct. OTOH results in wasted work in some common cases (e.g. when all
  instructions in a BasicBlock are deleted).

This came up while discussing some basic cases in
https://reviews.llvm.org/D80052.

Reviewers: jmorse, TWeaver, aprantl, dexonsmith, jdoerfert

Subscribers: jholewinski, qcolombet, hiraditya, jfb, sstefan1, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D80264
2020-05-21 15:58:12 -07:00
Eli Friedman 9b9454af8a Require "target datalayout" to be at the beginning of an IR file.
This will allow us to use the datalayout to disambiguate other
constructs in IR, like load alignment. Split off from D78403.

Differential Revision: https://reviews.llvm.org/D78413
2020-04-20 11:55:49 -07:00
Fangrui Song a36ddf0aa9 Migrate function attribute "no-frame-pointer-elim"="false" to "frame-pointer"="none" as cleanups after D56351 2019-12-24 16:27:51 -08:00
Fangrui Song 502a77f125 Migrate function attribute "no-frame-pointer-elim" to "frame-pointer"="all" as cleanups after D56351 2019-12-24 15:57:33 -08:00
Petr Hosek 8b161bacf4 [SafeStack] Insert the deref before remaining elements
This is a follow up to D64971. While we need to insert the deref after
the offset, it needs to come before the remaining elements in the
original expression since the deref needs to happen before the LLVM
fragment if present.

Differential Revision: https://reviews.llvm.org/D65172

llvm-svn: 366865
2019-07-24 00:16:23 +00:00
Petr Hosek f6cd6ffbc9 [SafeStack] Insert the deref after the offset
While debugging code that uses SafeStack, we've noticed that LLVM
produces an invalid DWARF. Concretely, in the following example:

  int main(int argc, char* argv[]) {
    std::string value = "";
    printf("%s\n", value.c_str());
    return 0;
  }

DWARF would describe the value variable as being located at:

  DW_OP_breg14 R14+0, DW_OP_deref, DW_OP_constu 0x20, DW_OP_minus

The assembly to get this variable is:

  leaq    -32(%r14), %rbx

The order of operations in the DWARF symbols is incorrect in this case.
Specifically, the deref is incorrect; this appears to be incorrectly
re-inserted in repalceOneDbgValueForAlloca.

With this change which inserts the deref after the offset instead of
before it, LLVM produces correct DWARF:

  DW_OP_breg14 R14-32

Differential Revision: https://reviews.llvm.org/D64971

llvm-svn: 366726
2019-07-22 18:52:42 +00:00
Fangrui Song ac14f7b10c [lit] Delete empty lines at the end of lit.local.cfg NFC
llvm-svn: 363538
2019-06-17 09:51:07 +00:00
Eric Christopher cee313d288 Revert "Temporarily Revert "Add basic loop fusion pass.""
The reversion apparently deleted the test/Transforms directory.

Will be re-reverting again.

llvm-svn: 358552
2019-04-17 04:52:47 +00:00
Eric Christopher a863435128 Temporarily Revert "Add basic loop fusion pass."
As it's causing some bot failures (and per request from kbarton).

This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.

llvm-svn: 358546
2019-04-17 02:12:23 +00:00
Vlad Tsyrklevich 2499aeead9 SafeStack: Prevent OOB reads with mem intrinsics
Summary:
Currently, the SafeStack analysis disallows out-of-bounds writes but not
out-of-bounds reads for mem intrinsics like llvm.memcpy. This could
cause leaks of pointers to the safe stack by leaking spilled registers/
frame pointers. Check for allocas used as source or destination pointers
to mem intrinsics.

Reviewers: eugenis

Reviewed By: eugenis

Subscribers: pcc, llvm-commits, kcc

Differential Revision: https://reviews.llvm.org/D51334

llvm-svn: 341116
2018-08-30 20:44:51 +00:00
Eli Friedman 59de37ba6c [SafeStack] Set debug location for calls to __safestack_pointer_address.
Otherwise, the debug info is incorrect.  On its own, this is mostly
harmless, but the safe-stack also later inlines the call to
__safestack_pointer_address, which leads to debug info with the wrong
scope, which eventually causes an assertion failure (and incorrect debug
info in release mode).

Differential Revision: https://reviews.llvm.org/D51075

llvm-svn: 340651
2018-08-24 20:42:32 +00:00
Eli Friedman f3c39a7c79 [SafeStack] Handle unreachable code with safe stack coloring.
Instead of asserting that the function doesn't have any unreachable
code, just ignore it for the purpose of computing liveness.

Differential Revision: https://reviews.llvm.org/D51070

llvm-svn: 340456
2018-08-22 21:38:57 +00:00
Shiva Chen 2c864551df [DebugInfo] Add DILabel metadata and intrinsic llvm.dbg.label.
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is

!DILabel(scope: !1, name: "foo", file: !2, line: 3)

We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is

llvm.dbg.label(metadata !1)

It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.

We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.

Differential Revision: https://reviews.llvm.org/D45024

Patch by Hsiangkai Wang.

llvm-svn: 331841
2018-05-09 02:40:45 +00:00
Daniel Neilson 095d72989d [SafeStack] Use updated CreateMemCpy API to set more accurate source and destination alignments.
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
creation of memcpys in the SafeStack pass to set the alignment of the destination object to
its stack alignment while separately setting the source byval arguments alignment to its
alignment.

Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. (rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774,
rL324781, rL324784 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.

Reference
   http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html
   http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html

Reviewers: eugenis, bollu

Reviewed By: eugenis

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D42710

llvm-svn: 324955
2018-02-12 22:39:47 +00:00
Daniel Neilson 1e68724d24 Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1)
Summary:
 This is a resurrection of work first proposed and discussed in Aug 2015:
   http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html
and initially landed (but then backed out) in Nov 2015:
   http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html

 The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument
which is required to be a constant integer. It represents the alignment of the
dest (and source), and so must be the minimum of the actual alignment of the
two.

 This change is the first in a series that allows source and dest to each
have their own alignments by using the alignment attribute on their arguments.

 In this change we:
1) Remove the alignment argument.
2) Add alignment attributes to the source & dest arguments. We, temporarily,
   require that the alignments for source & dest be equal.

 For example, code which used to read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false)
will now read
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false)

 Downstream users may have to update their lit tests that check for
@llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script
may help with updating the majority of your tests, but it does not catch all possible
patterns so some manual checking and updating will be required.

s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g
s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g

 The remaining changes in the series will:
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
   source and dest alignments.
Step 3) Update Clang to use the new IRBuilder API.
Step 4) Update Polly to use the new IRBuilder API.
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
        and those that use use MemIntrinsicInst::[get|set]Alignment() to use
        getDestAlignment() and getSourceAlignment() instead.
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
        MemIntrinsicInst::[get|set]Alignment() methods.

Reviewers: pete, hfinkel, lhames, reames, bollu

Reviewed By: reames

Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits

Differential Revision: https://reviews.llvm.org/D41675

llvm-svn: 322965
2018-01-19 17:13:12 +00:00
Reid Kleckner 6d353348e5 Parse and print DIExpressions inline to ease IR and MIR testing
Summary:
Most DIExpressions are empty or very simple. When they are complex, they
tend to be unique, so checking them inline is reasonable.

This also avoids the need for CodeGen passes to append to the
llvm.dbg.mir named md node.

See also PR22780, for making DIExpression not be an MDNode.

Reviewers: aprantl, dexonsmith, dblaikie

Subscribers: qcolombet, javed.absar, eraman, hiraditya, llvm-commits

Differential Revision: https://reviews.llvm.org/D37075

llvm-svn: 311594
2017-08-23 20:31:27 +00:00
Adrian Prantl abe04759a6 Remove the obsolete offset parameter from @llvm.dbg.value
There is no situation where this rarely-used argument cannot be
substituted with a DIExpression and removing it allows us to simplify
the DWARF backend. Note that this patch does not yet remove any of
the newly dead code.

rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D35951

llvm-svn: 309426
2017-07-28 20:21:02 +00:00
Florian Hahn ffc498dfcc Align definition of DW_OP_plus with DWARF spec [3/3]
Summary:
This patch is part of 3 patches that together form a single patch, but must be introduced in stages in order not to break things.
 
The way that LLVM interprets DW_OP_plus in DIExpression nodes is basically that of the DW_OP_plus_uconst operator since LLVM expects an unsigned constant operand. This unnecessarily restricts the DW_OP_plus operator, preventing it from being used to describe the evaluation of runtime values on the expression stack. These patches try to align the semantics of DW_OP_plus and DW_OP_minus with that of the DWARF definition, which pops two elements off the expression stack, performs the operation and pushes the result back on the stack.
 
This is done in three stages:
• The first patch (LLVM) adds support for DW_OP_plus_uconst.
• The second patch (Clang) contains changes all its uses from DW_OP_plus to DW_OP_plus_uconst.
• The third patch (LLVM) changes the semantics of DW_OP_plus and DW_OP_minus to be in line with its DWARF meaning. This patch includes the bitcode upgrade from legacy DIExpressions.

Patch by Sander de Smalen.

Reviewers: echristo, pcc, aprantl

Reviewed By: aprantl

Subscribers: fhahn, javed.absar, aprantl, llvm-commits

Differential Revision: https://reviews.llvm.org/D33894

llvm-svn: 305386
2017-06-14 13:14:38 +00:00
Evgeniy Stepanov 2acea2786b [safestack] Disable stack coloring by default.
Workaround for apparent miscompilation of PR32143.

llvm-svn: 303456
2017-05-19 20:58:48 +00:00
Adrian Prantl 6825fb64e9 PR32382: Fix emitting complex DWARF expressions.
The DWARF specification knows 3 kinds of non-empty simple location
descriptions:
1. Register location descriptions
  - describe a variable in a register
  - consist of only a DW_OP_reg
2. Memory location descriptions
  - describe the address of a variable
3. Implicit location descriptions
  - describe the value of a variable
  - end with DW_OP_stack_value & friends

The existing DwarfExpression code is pretty much ignorant of these
restrictions. This used to not matter because we only emitted very
short expressions that we happened to get right by accident.  This
patch makes DwarfExpression aware of the rules defined by the DWARF
standard and now chooses the right kind of location description for
each expression being emitted.

This would have been an NFC commit (for the existing testsuite) if not
for the way that clang describes captured block variables. Based on
how the previous code in LLVM emitted locations, DW_OP_deref
operations that should have come at the end of the expression are put
at its beginning. Fixing this means changing the semantics of
DIExpression, so this patch bumps the version number of DIExpression
and implements a bitcode upgrade.

There are two major changes in this patch:

I had to fix the semantics of dbg.declare for describing function
arguments. After this patch a dbg.declare always takes the *address*
of a variable as the first argument, even if the argument is not an
alloca.

When lowering a DBG_VALUE, the decision of whether to emit a register
location description or a memory location description depends on the
MachineLocation — register machine locations may get promoted to
memory locations based on their DIExpression. (Future) optimization
passes that want to salvage implicit debug location for variables may
do so by appending a DW_OP_stack_value. For example:
  DBG_VALUE, [RBP-8]                        --> DW_OP_fbreg -8
  DBG_VALUE, RAX                            --> DW_OP_reg0 +0
  DBG_VALUE, RAX, DIExpression(DW_OP_deref) --> DW_OP_reg0 +0

All testcases that were modified were regenerated from clang. I also
added source-based testcases for each of these to the debuginfo-tests
repository over the last week to make sure that no synchronized bugs
slip in. The debuginfo-tests compile from source and run the debugger.

https://bugs.llvm.org/show_bug.cgi?id=32382
<rdar://problem/31205000>

Differential Revision: https://reviews.llvm.org/D31439

llvm-svn: 300522
2017-04-18 01:21:53 +00:00
Matt Arsenault f10061ec70 Add address space mangling to lifetime intrinsics
In preparation for allowing allocas to have non-0 addrspace.

llvm-svn: 299876
2017-04-10 20:18:21 +00:00
Petr Hosek a7d5916308 [Fuchsia] Use thread-pointer ABI slots for stack-protector and safe-stack
The Fuchsia ABI defines slots from the thread pointer where the
stack-guard value for stack-protector, and the unsafe stack pointer
for safe-stack, are stored. This parallels the Android ABI support.

Patch by Roland McGrath

Differential Revision: https://reviews.llvm.org/D30237

llvm-svn: 296081
2017-02-24 03:10:10 +00:00
Evgeniy Stepanov ee2d77f6d6 Disable TLS for stack protector on Android API<17.
The TLS slot did not exist back then.

llvm-svn: 296014
2017-02-23 21:06:35 +00:00
David L Kreitzer d5c6755d83 [safestack] Use non-thread-local unsafe stack pointer for Contiki OS
Patch by Michael LeMay

Differential revision: http://reviews.llvm.org/D19852

llvm-svn: 284254
2016-10-14 17:56:00 +00:00
David L Kreitzer d9ca3589de [safestack] Move X86-targeted tests into the X86 subdirectory.
Patch by Michael LeMay

Differential revision: http://reviews.llvm.org/D25340

llvm-svn: 284139
2016-10-13 17:51:59 +00:00
Evgeniy Stepanov aa84f050fc [safestack] Fix assertion failure in stack coloring.
This is a fix for PR30318.

Clang may generate IR where an alloca is already live when entering a
BB with lifetime.start. In this case, conservatively extend the
alloca lifetime all the way back to the block entry.

llvm-svn: 281784
2016-09-16 22:04:10 +00:00
Evgeniy Stepanov d99f80b48e [safestack] Layout large allocas first to reduce fragmentation.
llvm-svn: 277544
2016-08-02 23:21:30 +00:00
Evgeniy Stepanov 906f6fb565 [safestack] Fix stack guard live range.
Stack guard slot is live throughout the function.

llvm-svn: 276712
2016-07-26 00:05:14 +00:00
Evgeniy Stepanov 8d78bd5041 Fix invalid iterator use in safestack coloring.
llvm-svn: 276676
2016-07-25 19:25:40 +00:00
Evgeniy Stepanov a5da256f92 StackColoring for SafeStack.
This is a fix for PR27842.

An IR-level implementation of stack coloring tailored to work with
SafeStack. It is a bit weaker than the MI implementation in that it
does not the "lifetime start at first access" logic. This can be
improved in the future.

This patch also replaces the naive implementation of stack frame
layout with a greedy algorithm that can split existing stack slots
and even fit small objects inside the alignment padding of other
objects.

llvm-svn: 274162
2016-06-29 20:37:43 +00:00
Evgeniy Stepanov 45fa0fd758 [safestack] Sink unsafe address computation to each use.
This is a fix for PR27844.
When replacing uses of unsafe allocas, emit the new location
immediately after each use. Without this, the pointer stays live from
the function entry to the last use, while it's usually cheaper to
recalculate.

llvm-svn: 272969
2016-06-16 22:34:04 +00:00
Evgeniy Stepanov 72d961a1da [safestack] Fixup llvm.dbg.value when rewriting unsafe allocas.
When moving unsafe allocas to the unsafe stack, dbg.declare intrinsics are
updated to refer to the new location.

This change does the same to dbg.value intrinsics.

llvm-svn: 272968
2016-06-16 22:34:00 +00:00
Duncan P. N. Exon Smith a59d3e5af8 DebugInfo: Remove MDString-based type references
Eliminate DITypeIdentifierMap and make DITypeRef a thin wrapper around
DIType*.  It is no longer legal to refer to a DICompositeType by its
'identifier:', and DIBuilder no longer retains all types with an
'identifier:' automatically.

Aside from the bitcode upgrade, this is mainly removing logic to resolve
an MDString-based reference to an actualy DIType.  The commits leading
up to this have made the implicit type map in DICompileUnit's
'retainedTypes:' field superfluous.

This does not remove DITypeRef, DIScopeRef, DINodeRef, and
DITypeRefArray, or stop using them in DI-related metadata.  Although as
of this commit they aren't serving a useful purpose, there are patchces
under review to reuse them for CodeView support.

The tests in LLVM were updated with deref-typerefs.sh, which is attached
to the thread "[RFC] Lazy-loading of debug info metadata":

  http://lists.llvm.org/pipermail/llvm-dev/2016-April/098318.html

llvm-svn: 267296
2016-04-23 21:08:00 +00:00
Marcin Koscielnicki 3fdc257d6a [AArch64] [ARM] Make a target-independent llvm.thread.pointer intrinsic.
Both AArch64 and ARM support llvm.<arch>.thread.pointer intrinsics that
just return the thread pointer.  I have a pending patch that does the same
for SystemZ (D19054), and there are many more targets that could benefit
from one.

This patch merges the ARM and AArch64 intrinsics into a single target
independent one that will also be used by subsequent targets.

Differential Revision: http://reviews.llvm.org/D19098

llvm-svn: 266818
2016-04-19 20:51:05 +00:00
Adrian Prantl 75819aedf6 [PR27284] Reverse the ownership between DICompileUnit and DISubprogram.
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.

Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.

Motivation
----------

Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.

We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.

Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.

http://reviews.llvm.org/D19034
<rdar://problem/25256815>

llvm-svn: 266446
2016-04-15 15:57:41 +00:00
Evgeniy Stepanov f17120a85f [safestack] Add canary to unsafe stack frames
Add StackProtector to SafeStack. This adds limited protection against
data corruption in the caller frame. Current implementation treats
all stack protector levels as -fstack-protector-all.

llvm-svn: 266004
2016-04-11 22:27:48 +00:00
Adrian Prantl b8089516a5 testcase gardening: update the emissionKind enum to the new syntax. (NFC)
llvm-svn: 265081
2016-04-01 00:16:49 +00:00
Anna Zaks cad7994c3b [safestack] Make sure the unsafe stack pointer is popped in all cases
The unsafe stack pointer is only popped in moveStaticAllocasToUnsafeStack so it won't happen if there are no static allocas.

Fixes https://llvm.org/bugs/show_bug.cgi?id=26122

Differential Revision: http://reviews.llvm.org/D16339

llvm-svn: 259447
2016-02-02 01:03:11 +00:00
Evgeniy Stepanov 8827f2db85 [safestack] Add option for non-TLS unsafe stack pointer.
This patch adds an option, -safe-stack-no-tls, for using normal
storage instead of thread-local storage for the unsafe stack pointer.
This can be useful when SafeStack is applied to an operating system
kernel.

http://reviews.llvm.org/D15673

Patch by Michael LeMay.

llvm-svn: 256221
2015-12-22 00:13:11 +00:00
Evgeniy Stepanov 42f3b12274 [safestack] Protect byval function arguments.
Detect unsafe byval function arguments and move them to the unsafe
stack.

llvm-svn: 254353
2015-12-01 00:40:05 +00:00
Evgeniy Stepanov a4ac3f4bdf [safestack] Fix handling of array allocas.
The current code does not take alloca array size into account and,
as a result, considers any access past the first array element to be
unsafe.

llvm-svn: 254350
2015-12-01 00:06:13 +00:00
Evgeniy Stepanov 9842d61ca4 [safestack] Fix alignment of dynamic allocas.
Fixes PR25588.

llvm-svn: 254109
2015-11-25 22:52:30 +00:00
Evgeniy Stepanov 447bbdb171 [safestack] Rewrite isAllocaSafe using SCEV.
Use ScalarEvolution to calculate memory access bounds.
Handle function calls based on readnone/nocapture attributes.
Handle memory intrinsics with constant size.

This change improves both recall and precision of IsAllocaSafe.
See the new tests (ex. BitCastWide) for the kind of code that was wrongly
classified as safe.

SCEV efficiency seems to be limited by the fact the SafeStack runs late
(in CodeGenPrepare), and many loops are unrolled or otherwise not in LCSSA.

llvm-svn: 253083
2015-11-13 21:21:42 +00:00
Peter Collingbourne d4bff30370 DI: Reverse direction of subprogram -> function edge.
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.

For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.

This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.

Since this is an IR change, a bitcode upgrade has been provided.

Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.

Differential Revision: http://reviews.llvm.org/D14265

llvm-svn: 252219
2015-11-05 22:03:56 +00:00
Evgeniy Stepanov d1aad26589 [safestack] Fast access to the unsafe stack pointer on AArch64/Android.
Android libc provides a fixed TLS slot for the unsafe stack pointer,
and this change implements direct access to that slot on AArch64 via
__builtin_thread_pointer() + offset.

This change also moves more code into TargetLowering and its
target-specific subclasses to get rid of target-specific codegen
in SafeStackPass.

This change does not touch the ARM backend because ARM lowers
builting_thread_pointer as aeabi_read_tp, which is not available
on Android.

The previous iteration of this change was reverted in r250461. This
version leaves the generic, compiler-rt based implementation in
SafeStack.cpp instead of moving it to TargetLoweringBase in order to
allow testing without a TargetMachine.

llvm-svn: 251324
2015-10-26 18:28:25 +00:00
Evgeniy Stepanov 9addbc9fc1 Revert "[safestack] Fast access to the unsafe stack pointer on AArch64/Android."
Breaks the hexagon buildbot.

llvm-svn: 250461
2015-10-15 21:26:49 +00:00
Evgeniy Stepanov 142947e9f0 [safestack] Fast access to the unsafe stack pointer on AArch64/Android.
Android libc provides a fixed TLS slot for the unsafe stack pointer,
and this change implements direct access to that slot on AArch64 via
__builtin_thread_pointer() + offset.

This change also moves more code into TargetLowering and its
target-specific subclasses to get rid of target-specific codegen
in SafeStackPass.

This change does not touch the ARM backend because ARM lowers
builting_thread_pointer as aeabi_read_tp, which is not available
on Android.

llvm-svn: 250456
2015-10-15 20:50:16 +00:00