Summary: Allow unroll and jam loops forced by user.
LoopUnrollAndJamPass is still disabled by default in the NPM pipeline,
and can be controlled by -enable-npm-unroll-and-jam.
Reviewed By: Meinersbur, dmgreen
Differential Revision: https://reviews.llvm.org/D87786
For consistency with legacy pass name.
Helps with 37 instances of "unknown pass name 'tbaa'" in check-llvm under NPM.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D84967
The legacy pass is called "loop-unroll", but in the new PM it's called "unroll".
Also applied to unroll-and-jam and unroll-full.
Fixes various check-llvm tests when NPM is turned on.
Reviewed By: Whitney, dmgreen
Differential Revision: https://reviews.llvm.org/D82590
This makes sure to correctly register the loop info of the children
of unroll and jammed loops. It re-uses some code from the unroller for
registering subloops.
Differential Revision: https://reviews.llvm.org/D80619
loop nest.
Summary: As discussed in https://reviews.llvm.org/D73129.
Example
Before unroll and jam:
for
A
for
B
for
C
D
E
After unroll and jam (currently):
for
A
A'
for
B
for
C
D
B'
for
C'
D'
E
E'
After unroll and jam (Ideal):
for
A
A'
for
B
B'
for
C
C'
D
D'
E
E'
This is the first patch to change unroll and jam to work in the ideal
way.
This patch change the safety checks needed to make sure is safe to
unroll and jam in the ideal way.
Reviewer: dmgreen, jdoerfert, Meinersbur, kbarton, bmahjour, etiotto
Reviewed By: Meinersbur
Subscribers: fhahn, hiraditya, zzheng, llvm-commits, anhtuyen, prithayan
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D76132
Summary:
The old pass manager separated speed optimization and size optimization
levels into two unsigned values. Coallescing both in an enum in the new
pass manager may lead to unintentional casts and comparisons.
In particular, taking a look at how the loop unroll passes were constructed
previously, the Os/Oz are now (==new pass manager) treated just like O3,
likely unintentionally.
This change disallows raw comparisons between optimization levels, to
avoid such unintended effects. As an effect, the O{s|z} behavior changes
for loop unrolling and loop unroll and jam, matching O2 rather than O3.
The change also parameterizes the threshold values used for loop
unrolling, primarily to aid testing.
Reviewers: tejohnson, davidxl
Reviewed By: tejohnson
Subscribers: zzheng, ychen, mehdi_amini, hiraditya, steven_wu, dexonsmith, dang, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D72547
pass.
Summary: This patch changes LoopUnrollAndJamPass to a function pass, and
keeps the loops traversal order same as defined in
FunctionToLoopPassAdaptor LoopPassManager.h.
The next patch will change the loop traversal to outer to inner order,
so more loops can be transform.
Discussion in llvm-dev mailing list:
https://groups.google.com/forum/#!topic/llvm-dev/LF4rUjkVI2g
Reviewer: dmgreen, jdoerfert, Meinersbur, kbarton, bmahjour, etiotto
Reviewed By: dmgreen
Subscribers: hiraditya, zzheng, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D72230
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
When multiple loop transformation are defined in a loop's metadata, their order of execution is defined by the order of their respective passes in the pass pipeline. For instance, e.g.
#pragma clang loop unroll_and_jam(enable)
#pragma clang loop distribute(enable)
is the same as
#pragma clang loop distribute(enable)
#pragma clang loop unroll_and_jam(enable)
and will try to loop-distribute before Unroll-And-Jam because the LoopDistribute pass is scheduled after UnrollAndJam pass. UnrollAndJamPass only supports one inner loop, i.e. it will necessarily fail after loop distribution. It is not possible to specify another execution order. Also,t the order of passes in the pipeline is subject to change between versions of LLVM, optimization options and which pass manager is used.
This patch adds 'followup' attributes to various loop transformation passes. These attributes define which attributes the resulting loop of a transformation should have. For instance,
!0 = !{!0, !1, !2}
!1 = !{!"llvm.loop.unroll_and_jam.enable"}
!2 = !{!"llvm.loop.unroll_and_jam.followup_inner", !3}
!3 = !{!"llvm.loop.distribute.enable"}
defines a loop ID (!0) to be unrolled-and-jammed (!1) and then the attribute !3 to be added to the jammed inner loop, which contains the instruction to distribute the inner loop.
Currently, in both pass managers, pass execution is in a fixed order and UnrollAndJamPass will not execute again after LoopDistribute. We hope to fix this in the future by allowing pass managers to run passes until a fixpoint is reached, use Polly to perform these transformations, or add a loop transformation pass which takes the order issue into account.
For mandatory/forced transformations (e.g. by having been declared by #pragma omp simd), the user must be notified when a transformation could not be performed. It is not possible that the responsible pass emits such a warning because the transformation might be 'hidden' in a followup attribute when it is executed, or it is not present in the pipeline at all. For this reason, this patche introduces a WarnMissedTransformations pass, to warn about orphaned transformations.
Since this changes the user-visible diagnostic message when a transformation is applied, two test cases in the clang repository need to be updated.
To ensure that no other transformation is executed before the intended one, the attribute `llvm.loop.disable_nonforced` can be added which should disable transformation heuristics before the intended transformation is applied. E.g. it would be surprising if a loop is distributed before a #pragma unroll_and_jam is applied.
With more supported code transformations (loop fusion, interchange, stripmining, offloading, etc.), transformations can be used as building blocks for more complex transformations (e.g. stripmining+stripmining+interchange -> tiling).
Reviewed By: hfinkel, dmgreen
Differential Revision: https://reviews.llvm.org/D49281
Differential Revision: https://reviews.llvm.org/D55288
llvm-svn: 348944
Try to improve the computed counts when it has been explicitly set by a pragma
or command line option. This moves the code around, so that first call to
computeUnrollCount to get a sensible count and override that if explicit unroll
and jam counts are specified.
Also added some extra debug messages for when unroll and jamming is disabled.
Differential Revision: https://reviews.llvm.org/D50075
llvm-svn: 339501
This is a simple implementation of the unroll-and-jam classical loop
optimisation.
The basic idea is that we take an outer loop of the form:
for i..
ForeBlocks(i)
for j..
SubLoopBlocks(i, j)
AftBlocks(i)
Instead of doing normal inner or outer unrolling, we unroll as follows:
for i... i+=2
ForeBlocks(i)
ForeBlocks(i+1)
for j..
SubLoopBlocks(i, j)
SubLoopBlocks(i+1, j)
AftBlocks(i)
AftBlocks(i+1)
Remainder Loop
So we have unrolled the outer loop, then jammed the two inner loops into
one. This can lead to a simpler inner loop if memory accesses can be shared
between the now jammed loops.
To do this we have to prove that this is all safe, both for the memory
accesses (using dependence analysis) and that ForeBlocks(i+1) can move before
AftBlocks(i) and SubLoopBlocks(i, j).
Differential Revision: https://reviews.llvm.org/D41953
llvm-svn: 336062
This is a simple implementation of the unroll-and-jam classical loop
optimisation.
The basic idea is that we take an outer loop of the form:
for i..
ForeBlocks(i)
for j..
SubLoopBlocks(i, j)
AftBlocks(i)
Instead of doing normal inner or outer unrolling, we unroll as follows:
for i... i+=2
ForeBlocks(i)
ForeBlocks(i+1)
for j..
SubLoopBlocks(i, j)
SubLoopBlocks(i+1, j)
AftBlocks(i)
AftBlocks(i+1)
Remainder
So we have unrolled the outer loop, then jammed the two inner loops into
one. This can lead to a simpler inner loop if memory accesses can be shared
between the now-jammed loops.
To do this we have to prove that this is all safe, both for the memory
accesses (using dependence analysis) and that ForeBlocks(i+1) can move before
AftBlocks(i) and SubLoopBlocks(i, j).
Differential Revision: https://reviews.llvm.org/D41953
llvm-svn: 333358