Calculate "can branch" using the MC API's rather than our hand-rolled regex'es.
As extra credit, allow setting the disassembly flavor for x86 based architectures to intel or att.
<rdar://problem/11319574>
<rdar://problem/9329275>
llvm-svn: 176392
StackFrame assumes m_sc is additive, but m_sc can lose its target. So now the SymbolContext::Clear() method takes a bool that indicates if the target should be cleared. Modified all existing code to properly set the bool argument.
llvm-svn: 175953
Fixed zero sized arrays to work correctly. This will only happen once we get a clang that emits correct debug info for zero sized arrays. For now I have marked the TestStructTypes.py as an expected failure.
llvm-svn: 169465
- add new header lldb-python.h to be included before other system headers
- short term fix (eventually python dependencies must be cleaned up)
Patch by Matt Kopec!
llvm-svn: 169341
Make stack frames fix up their line table entries when the target has source remappings. Also rearranged how the m_sc.target_sp was filled in so it can be used during the StackFrame::GetSymbolContext(...) function.
llvm-svn: 168845
on, basic inlined stepping works, including step-over of inlined functions. But for some as yet mysterious reason i386 debugging gets an
assert and dies immediately. So for now its off.
llvm-svn: 163044
Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes:
- Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file".
- modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly
- Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was.
- modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile()
Cleaned up header includes a bit as well.
llvm-svn: 162860
- no setting auto completion
- very manual and error prone way of getting/setting variables
- tons of code duplication
- useless instance names for processes, threads
Now settings can easily be defined like option values. The new settings makes use of the "OptionValue" classes so we can re-use the option value code that we use to set settings in command options. No more instances, just "does the right thing".
llvm-svn: 162366
Changes to synthetic children:
- the update(self): function can now (optionally) return a value - if it returns boolean value True, ValueObjectSyntheticFilter will not clear its caches across stop-points
this should allow better performance for Python-based synthetic children when one can be sure that the child ValueObjects have not changed
- making a difference between a synthetic VO and a VO with a synthetic value: now a ValueObjectSyntheticFilter will not return itself as its own synthetic value, but will (correctly)
claim to itself be synthetic
- cleared up the internal synthetic children architecture to make a more consistent use of pointers and references instead of shared pointers when possible
- major cleanup of unnecessary #include, data and functions in ValueObjectSyntheticFilter itself
- removed the SyntheticValueType enum and replaced it with a plain boolean (to which it was equivalent in the first place)
Some clean ups to the summary generation code
Centralized the code that clears out user-visible strings and data in ValueObject
More efficient summaries for libc++ containers
llvm-svn: 153061
This takes two important changes:
- Calling blocks is now supported. You need to
cast their return values, but that works fine.
- We now can correctly run JIT-compiled
expressions that use floating-point numbers.
Also, we have taken a fix that allows us to
ignore access control in Objective-C as in C++.
llvm-svn: 152286
I started work on being able to add symbol files after a debug session
had started with a new "target symfile add" command and quickly ran into
problems with stale Address objects in breakpoint locations that had
lldb_private::Section pointers into modules that had been removed or
replaced. This also let to grabbing stale modules from those sections.
So I needed to thread harded the Address, Section and related objects.
To do this I modified the ModuleChild class to now require a ModuleSP
on initialization so that a weak reference can created. I also changed
all places that were handing out "Section *" to have them hand out SectionSP.
All ObjectFile, SymbolFile and SymbolVendors were inheriting from ModuleChild
so all of the find plug-in, static creation function and constructors now
require ModuleSP references instead of Module *.
Address objects now have weak references to their sections which can
safely go stale when a module gets destructed.
This checkin doesn't complete the "target symfile add" command, but it
does get us a lot clioser to being able to do such things without a high
risk of crashing or memory corruption.
llvm-svn: 151336
objects for the backlink to the lldb_private::Process. The issues we were
running into before was someone was holding onto a shared pointer to a
lldb_private::Thread for too long, and the lldb_private::Process parent object
would get destroyed and the lldb_private::Thread had a "Process &m_process"
member which would just treat whatever memory that used to be a Process as a
valid Process. This was mostly happening for lldb_private::StackFrame objects
that had a member like "Thread &m_thread". So this completes the internal
strong/weak changes.
Documented the ExecutionContext and ExecutionContextRef classes so that our
LLDB developers can understand when and where to use ExecutionContext and
ExecutionContextRef objects.
llvm-svn: 151009
the lldb_private::StackFrame objects hold onto a weak pointer to the thread
object. The lldb_private::StackFrame objects the the most volatile objects
we have as when we are doing single stepping, frames can often get lost or
thrown away, only to be re-created as another object that still refers to the
same frame. We have another bug tracking that. But we need to be able to
have frames no longer be able to get the thread when they are not part of
a thread anymore, and this is the first step (this fix makes that possible
but doesn't implement it yet).
Also changed lldb_private::ExecutionContextScope to return shared pointers to
all objects in the execution context to further thread harden the internals.
llvm-svn: 150871
due to RTTI worries since llvm and clang don't use RTTI, but I was able to
switch back with no issues as far as I can tell. Once the RTTI issue wasn't
an issue, we were looking for a way to properly track weak pointers to objects
to solve some of the threading issues we have been running into which naturally
led us back to std::tr1::weak_ptr. We also wanted the ability to make a shared
pointer from just a pointer, which is also easily solved using the
std::tr1::enable_shared_from_this class.
The main reason for this move back is so we can start properly having weak
references to objects. Currently a lldb_private::Thread class has a refrence
to its parent lldb_private::Process. This doesn't work well when we now hand
out a SBThread object that contains a shared pointer to a lldb_private::Thread
as this SBThread can be held onto by external clients and if they end up
using one of these objects we can easily crash.
So the next task is to start adopting std::tr1::weak_ptr where ever it makes
sense which we can do with lldb_private::Debugger, lldb_private::Target,
lldb_private::Process, lldb_private::Thread, lldb_private::StackFrame, and
many more objects now that they are no longer using intrusive ref counted
pointer objects (you can't do std::tr1::weak_ptr functionality with intrusive
pointers).
llvm-svn: 149207
something like "display/4i $pc" (or something like this). With LLDB we already
were showing 3 lines of source before and 3 lines of source after the current
source line when showing a stop context. We now improve this by allowing the
user to control the number of lines with the new "stop-line-count-before" and
"stop-line-count-after" settings. Also, there is a new setting for how many
disassembly lines to show: "stop-disassembly-count". This will control how many
source lines are shown when there is no source or when we have no source line
info.
settings set stop-line-count-before 3
settings set stop-line-count-after 3
settings set stop-disassembly-count 4
settings set stop-disassembly-display no-source
The default values are set as shown above and allow 3 lines of source before
and after (what we used to do) the current stop location, and will display 4
lines of disassembly if the source is not available or if we have no debug
info. If both "stop-source-context-before" and "stop-source-context-after" are
set to zero, this will disable showing any source when stopped. The
"stop-disassembly-display" setting is an enumeration that allows you to control
when to display disassembly. It has 3 possible values:
"never" - never show disassembly no matter what
"no-source" - only show disassembly when there is no source line info or the source files are missing
"always" - always show disassembly.
llvm-svn: 145050
symbolication. Also improved the SBInstruction API to allow
access to the instruction opcode name, mnemonics, comment and
instruction data.
Added the ability to edit SBLineEntry objects (change the file,
line and column), and also allow SBSymbolContext objects to be
modified (set module, comp unit, function, block, line entry
or symbol).
The SymbolContext and SBSymbolContext can now generate inlined
call stack infomration for symbolication much easier using the
SymbolContext::GetParentInlinedFrameInfo(...) and
SBSymbolContext::GetParentInlinedFrameInfo(...) methods.
llvm-svn: 140518
shared pointers.
Changed the ExecutionContext over to use shared pointers for
the target, process, thread and frame since these objects can
easily go away at any time and any object that was holding onto
an ExecutionContext was running the risk of using a bad object.
Now that the shared pointers for target, process, thread and
frame are just a single pointer (they all use the instrusive
shared pointers) the execution context is much safer and still
the same size.
Made the shared pointers in the the ExecutionContext class protected
and made accessors for all of the various ways to get at the pointers,
references, and shared pointers.
llvm-svn: 140298
__attribute__ format so the compiler knows that this method takes
printf style formatter arguments and checks that it's being used
correctly. Fix a couple dozen incorrect SetErrorStringWithFormat()
calls throughout the sources.
llvm-svn: 140115
ModuleSP
Module::GetSP();
Since we are now using intrusive ref counts, we can easily turn any
pointer to a module into a shared pointer just by assigning it.
llvm-svn: 139984
Set the default Source File & line to main (if it can be found.) at startup. Selecting the current thread & or frame resets
the current source file & line, and "source list" as well as the breakpoint command "break set -l <NUM>" will use the
current source file.
llvm-svn: 139323
e.g. you may get "foo_class @ 0x123456" when typing "type summary add -f ${var} foo_class"
- Added a new special formatting token %T for summaries. This shows the type of the object.
Using it, the new "type @ location" summary could be manually generated by writing ${var%T} @ ${var%L}
- Bits and pieces required to support "frame variable array[n-m]"
The feature is not enabled yet because some additional design and support code is required, but the basics
are getting there
- Fixed a potential issue where a ValueObjectSyntheticFilter was not holding on to its SyntheticChildrenSP
Because of the way VOSF are being built now, this has never been an actual issue, but it is still sensible for
a VOSF to hold on to the SyntheticChildrenSP as well as to its FrontEnd
llvm-svn: 138080
Access to synthetic children by name:
if your object has a synthetic child named foo you can now type
frame variable object.foo (or ->foo if you have a pointer)
and that will print the value of the synthetic child
(if your object has an actual child named foo, the actual child prevails!)
this behavior should also work in summaries, and you should be able to use
${var.foo} and ${svar.foo} interchangeably
(but using svar.foo will mask an actual child named foo)
llvm-svn: 137314
if your datatype provides synthetic children, "frame variable object[index]" should now do the right thing
in cases where the above syntax would have been rejected before, i.e.
object is not a pointer nor an array (frame variable ignores potential overload of [])
object is a pointer to an Objective-C class (which cannot be dereferenced)
expression will still run operator[] if available and complain if it cannot do so
synthetic children by name do not work yet
llvm-svn: 137097
was previously using the entire frame variable list instead of using the
in scope variable list. I added a new function to a stack frame:
lldb::VariableListSP
StackFrame::GetInScopeVariableList (bool get_file_globals);
This gets only variables that are in scope and they will be ordered such
that the variables from the current scope are first.
llvm-svn: 136745
Code cleanup:
- The Format Manager implementation is now split between two files: FormatClasses.{h|cpp} where the
actual formatter classes (ValueFormat, SummaryFormat, ...) are implemented and
FormatManager.{h|cpp} where the infrastructure classes (FormatNavigator, FormatManager, ...)
are contained. The wrapper code always remains in Debugger.{h|cpp}
- Several leftover fields, methods and comments from previous design choices have been removed
type category subcommands (enable, disable, delete) now can take a list of category names as input
- for type category enable, saying "enable A B C" is the same as saying
enable C
enable B
enable A
(the ordering is relevant in enabling categories, and it is expected that a user typing
enable A B C wants to look into category A, then into B, then into C and not the other
way round)
- for the other two commands, the order is not really relevant (however, the same inverted ordering
is used for consistency)
llvm-svn: 135494
instructions if they are conditional. Also fixed issues where the PC wasn't
getting bit zero stripped for ARM targets when a stack frame was thumb. We
now properly call through the GetOpcodeLoadAddress() functions to make sure
the addresses are properly stripped for any targets that may decorate up
their addresses.
We now don't pass the SIGSTOP signals along. We can revisit this soon, but
currently this was interfering with debugging some older ARM targets that
don't have vCont support in the GDB server.
llvm-svn: 134461
- ${*expr} now simply means to dereference expr before actually using it
- bitfields, array ranges and pointer ranges now work in a (hopefully) more natural and language-compliant way
a new class TypeHierarchyNavigator replicates the behavior of the FormatManager in going through type hierarchies
when one-lining summary strings, children's summaries can be used as well as values
llvm-svn: 134458
issue in the way block variables are marked as parsed. In the DWARF parser we
always parse all blocks for a function at once, so we can mark all blocks as
having all variables parsed and avoid recursive function calls to try and
reparse things that have already been handled.
Fixed an issue with how variables get scoped into blocks. The DWARF parser can
now handle abtract class definitions that contain concrete static variables.
When the concrete instance of the class functions get instantiated, they will
track down the concrete block for the abtract block and add the variable to
each block.
llvm-svn: 133302
inline contexts when the deepest most block is not inlined.
Added source path remappings to the lldb_private::Target class that allow it
to remap paths found in debug info so we can find source files that are elsewhere
on the current system.
Fixed disassembly by function name to disassemble inline functions that are
inside other functions much better and to show enough context before the
disassembly output so you can tell where things came from.
Added the ability to get more than one address range from a SymbolContext
class for the case where a block or function has discontiguous address ranges.
llvm-svn: 130044
pointer to a ValueObject or any of its dependent ValueObjects, and the whole cluster will
stay around as long as that shared pointer stays around.
llvm-svn: 130035
threads, and stack frame down in the lldb_private::Process,
lldb_private::Thread, lldb_private::StackFrameList and the
lldb_private::StackFrame classes. We had some command line
commands that had duplicate versions of the process status
output ("thread list" and "process status" for example).
Removed the "file" command and placed it where it should
have been: "target create". Made an alias for "file" to
"target create" so we stay compatible with GDB commands.
We can now have multple usable targets in lldb at the
same time. This is nice for comparing two runs of a program
or debugging more than one binary at the same time. The
new command is "target select <target-idx>" and also to see
a list of the current targets you can use the new "target list"
command. The flow in a debug session can be:
(lldb) target create /path/to/exe/a.out
(lldb) breakpoint set --name main
(lldb) run
... hit breakpoint
(lldb) target create /bin/ls
(lldb) run /tmp
Process 36001 exited with status = 0 (0x00000000)
(lldb) target list
Current targets:
target #0: /tmp/args/a.out ( arch=x86_64-apple-darwin, platform=localhost, pid=35999, state=stopped )
* target #1: /bin/ls ( arch=x86_64-apple-darwin, platform=localhost, pid=36001, state=exited )
(lldb) target select 0
Current targets:
* target #0: /tmp/args/a.out ( arch=x86_64-apple-darwin, platform=localhost, pid=35999, state=stopped )
target #1: /bin/ls ( arch=x86_64-apple-darwin, platform=localhost, pid=36001, state=exited )
(lldb) bt
* thread #1: tid = 0x2d03, 0x0000000100000b9a a.out`main + 42 at main.c:16, stop reason = breakpoint 1.1
frame #0: 0x0000000100000b9a a.out`main + 42 at main.c:16
frame #1: 0x0000000100000b64 a.out`start + 52
Above we created a target for "a.out" and ran and hit a
breakpoint at "main". Then we created a new target for /bin/ls
and ran it. Then we listed the targest and selected our original
"a.out" program, so we showed two concurent debug sessions
going on at the same time.
llvm-svn: 129695
expressions that are simple enough to get passed to the "frame var" underpinnings. The parser code will
have to be changed to also query for the dynamic types & offsets as it is looking up variables.
The behavior of "frame var" is controlled in two ways. You can pass "-d {true/false} to the frame var
command to get the dynamic or static value of the variables you are printing.
There's also a general setting:
target.prefer-dynamic-value (boolean) = 'true'
which is consulted if you call "frame var" without supplying a value for the -d option.
llvm-svn: 129623
plugin by name on the command line for when there is more than one disassembler
plugin.
Taught the Opcode class to dump itself so that "disassembler -b" will dump
the bytes correctly for each opcode type. Modified all places that were passing
the opcode bytes buffer in so that the bytes could be displayed to just pass
in a bool that indicates if we should dump the opcode bytes since the opcode
now lives inside llvm_private::Instruction.
llvm-svn: 128290
now, in addition to cpu type/subtype and architecture flavor, contains:
- byte order (big endian, little endian)
- address size in bytes
- llvm::Triple for true target triple support and for more powerful plug-in
selection.
llvm-svn: 125602
fragile ivars if requested. This was done by changing the previous second parameter
to an options bitfield that can be populated by logical OR'ing the new
StackFrame::ExpressionPathOption enum values together:
typedef enum ExpressionPathOption
{
eExpressionPathOptionCheckPtrVsMember = (1u << 0),
eExpressionPathOptionsNoFragileObjcIvar = (1u << 1),
};
So the old function was:
lldb::ValueObjectSP
StackFrame::GetValueForVariableExpressionPath (const char *var_expr, bool check_ptr_vs_member, Error &error);
But it is now:
lldb::ValueObjectSP
StackFrame::GetValueForVariableExpressionPath (const char *var_expr, uint32_t options, Error &error);
This allows the expression parser in Target::EvaluateExpression(...) to avoid
using simple frame variable expression paths when evaluating something that might
be a fragile ivar.
llvm-svn: 123938
the way LLDB lazily gets complete definitions for types within the debug info.
When we run across a class/struct/union definition in the DWARF, we will only
parse the full definition if we need to. This works fine for top level types
that are assigned directly to variables and arguments, but when we have a
variable with a class, lets say "A" for this example, that has a member:
"B *m_b". Initially we don't need to hunt down a definition for this class
unless we are ever asked to do something with it ("expr m_b->getDecl()" for
example). With my previous approach to lazy type completion, we would be able
to take a "A *a" and get a complete type for it, but we wouldn't be able to
then do an "a->m_b->getDecl()" unless we always expanded all types within a
class prior to handing out the type. Expanding everything is very costly and
it would be great if there were a better way.
A few months ago I worked with the llvm/clang folks to have the
ExternalASTSource class be able to complete classes if there weren't completed
yet:
class ExternalASTSource {
....
virtual void
CompleteType (clang::TagDecl *Tag);
virtual void
CompleteType (clang::ObjCInterfaceDecl *Class);
};
This was great, because we can now have the class that is producing the AST
(SymbolFileDWARF and SymbolFileDWARFDebugMap) sign up as external AST sources
and the object that creates the forward declaration types can now also
complete them anywhere within the clang type system.
This patch makes a few major changes:
- lldb_private::Module classes now own the AST context. Previously the TypeList
objects did.
- The DWARF parsers now sign up as an external AST sources so they can complete
types.
- All of the pure clang type system wrapper code we have in LLDB (ClangASTContext,
ClangASTType, and more) can now be iterating through children of any type,
and if a class/union/struct type (clang::RecordType or ObjC interface)
is found that is incomplete, we can ask the AST to get the definition.
- The SymbolFileDWARFDebugMap class now will create and use a single AST that
all child SymbolFileDWARF classes will share (much like what happens when
we have a complete linked DWARF for an executable).
We will need to modify some of the ClangUserExpression code to take more
advantage of this completion ability in the near future. Meanwhile we should
be better off now that we can be accessing any children of variables through
pointers and always be able to resolve the clang type if needed.
llvm-svn: 123613
an issue with the way the UnwindLLDB was handing out RegisterContexts: it
was making shared pointers to register contexts and then handing out just
the pointers (which would get put into shared pointers in the thread and
stack frame classes) and cause double free issues. MallocScribble helped to
find these issues after I did some other cleanup. To help avoid any
RegisterContext issue in the future, all code that deals with them now
returns shared pointers to the register contexts so we don't end up with
multiple deletions. Also now that the RegisterContext class doesn't require
a stack frame, we patched a memory leak where a StackFrame object was being
created and leaked.
Made the RegisterContext class not have a pointer to a StackFrame object as
one register context class can be used for N inlined stack frames so there is
not a 1 - 1 mapping. Updates the ExecutionContextScope part of the
RegisterContext class to never return a stack frame to indicate this when it
is asked to recreate the execution context. Now register contexts point to the
concrete frame using a concrete frame index. Concrete frames are all of the
frames that are actually formed on the stack of a thread. These concrete frames
can be turned into one or more user visible frames due to inlining. Each
inlined stack frame has the exact same register context (shared via shared
pointers) as any parent inlined stack frames all the way up to the concrete
frame itself.
So now the stack frames and the register contexts should behave much better.
llvm-svn: 122976