This is a very basic implementation of a library that easily allows to drive LLDB.framework to write test cases for performance
This is separate from the LLDB testsuite in test/ in that:
a) this uses C++ instead of Python to avoid measures being affected by SWIG
b) this is in very early development and needs lots of tweaking before it can be considered functionally complete
c) this is not meant to test correctness but to help catch performance regressions
There is a sample application built against the library (in darwin/sketch) that uses the famous sample app Sketch as an inferior to measure certain basic parameters of LLDB's behavior.
The resulting output is a PLIST much like the following:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
<dict>
<key>fetch-frames</key>
<real>0.13161715522222225</real>
</dict>
<dict>
<key>file-line-bkpt</key>
<real>0.029111678750000002</real>
</dict>
<dict>
<key>fetch-modules</key>
<real>0.00026376766666666668</real>
</dict>
<dict>
<key>fetch-vars</key>
<real>0.17820429311111111</real>
</dict>
<dict>
<key>run-expr</key>
<real>0.029676525769230768</real>
</dict>
</array>
</plist>
Areas for improvement:
- code cleanups (I will be out of the office for a couple days this coming week, but please keep ideas coming!)
- more metrics and test cases
- better error checking
This toolkit also comprises a simple event-loop-driven controller for LLDB, similar yet much simpler to what the Driver does to implement the lldb command-line tool.
llvm-svn: 176715
- generate-vers.pl has to be called by cmake to generate the version number
- parallel builds not yet supported; dependency on clang must be explicitly specified
Tested on Linux.
- Building on Mac will require code-signing logic to be implemented.
- Building on Windows will require OS-detection logic and some selective directory inclusion
Thanks to Carlo Kok (who originally prepared these CMakefiles for Windows) and Ben Langmuir
who ported them to Linux!
llvm-svn: 175795
Fix in loading mach files from memory when using DynamicLoaderMacOSXDYLD.
Removed the uuid mismatch warning that could be spit out and any time during debugging and removed the test case that was looking for that. Currently the "add-dsym" or "target symbols add" command will report an error when the UUID's don't match.
Be more careful when checking and resolving section + offset addresses to make sure none of the base addresses are invalid.
llvm-svn: 174222
Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
equality can be strict or loose and we want code to
explicitly choose one or the other.
Also renamed the Compare function to IsEqualTo, to
avoid confusion.
<rdar://problem/12856749>
llvm-svn: 170152
"~rc" via getpwnam() instead of doing tilde expansion and doing soft-link
dereferencing via realpath() - if we're pointing to a softlink, leave it
as-is.
<rdar://problem/12597698>
llvm-svn: 167052
whether we try to call an external program to load symbols unconditionally,
or if we check the user's preferences before calling it.
ProcessMachCore now sets CanJIT to false - we can't execute code in a core file.
DynamicLoaderDarwinKernel::OSKextLoadedKextSummary::LoadImageUsingMemoryModule changed
to load the kernel from an on-disk file if at all possible.
Don't load the kext binaries out of memory from the remote systems - their linkedit doesn't
seem to be in a good state and we'll error out down in SymbolVendorMacOSX if we try to use
the in-memory images.
Call Symbols::DownloadObjectAndSymbolFile to get the kext/kernel binary -- the external
program may be able to give us a file path on the local filesystem instead of reading
the binary / dSYM over a network drive every time. Fall back to calling
Target::GetSharedModule() like before if DownloadObjectAndSymbolFile fails.
llvm-svn: 165471
the Symbols::LocateExecutableObjectFile method to locate kexts and
kernels instead of copying them out of the memory of the remote
system. This is the fix for <rdar://problem/12416384>.
Fix a variable shadowing problem in
Symbols::LocateMacOSXFilesUsingDebugSymbols which caused the symbol
rich executable binaries to not be found even if they were listed
in the dSYM Info.plist.
Change Symbols::DownloadObjectAndSymbolFile to ignore dsymForUUID's
negative cache - this is typically being called by the user and we
should try even if there's a incorrect entry in the negative cache.
llvm-svn: 165061
We can now do:
Specify a path to a debug symbols file:
(lldb) add-dsym <path-to-dsym>
Go and download the dSYM file for the "libunc.dylib" module in your target:
(lldb) add-dsym --shlib libunc.dylib
Go and download the dSYM given a UUID:
(lldb) add-dsym --uuid <UUID>
Go and download the dSYM file for the current frame:
(lldb) add-dsym --frame
llvm-svn: 164806
When attaching on ARM hosted debuggers we were incorrectly setting the triple to "arm-apple-ios". This was happening because in the post attach code, we would lookup the process info through the platform, and if successful, we would get the architecture of the process. This code uses sysctl() calls, but we can only get the CPU type, not the subtype, so we would get ARM for CPU type and nothing for the cpu subtype, so this would map to "arm-apple-ios". I fixed the code to get the cpu subtype from "hw.cpusubtype" which is what we really want for ARM, and not the architecture is already correct. "add-dsym" then works like a charm. I also improved the command output when the architecture changes to show the entire triple instead of just the arch name.
llvm-svn: 163868
Partial fix for the above radar where we now resolve dsym mach-o files within the dSYM bundle when using "add-dsym" through the platform.
llvm-svn: 163676
Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes:
- Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file".
- modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly
- Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was.
- modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile()
Cleaned up header includes a bit as well.
llvm-svn: 162860
'add-dsym' (aka 'target symbols add') should display error messages when dsym file is not found
or the dsym uuid does not match any existing modules. Add TestAddDsymCommand.py test file.
llvm-svn: 162332
On Lion, because the rights initially doesn't exist in /etc/authorization, if an admin user logs in and uses lldb within the first 5 minutes, it is possible to do AuthorizationCopyRights on LaunchUsingXPCRightName and get the rights back. As another security measure, we make sure that the LaunchUsingXPCRightName rights actually exists.
Removed Xcode as the user of the XPC service to shrink the security surface area.
llvm-svn: 156424
We make sure that if the user cancels out of the authentication dialog to add 'com.apple.lldb.LaunchUsingXPC' rights to /etc/authorization, we don't try to do AuthorizationCopyRights.
As well, refactored a bit so that control flow is easier to read for other folks. Added more comments.
llvm-svn: 156423