Commit Graph

3 Commits

Author SHA1 Message Date
Ehsan Amiri a538b0f023 Adding -verify-machineinstrs option to PowerPC tests
Currently we have a number of tests that fail with -verify-machineinstrs.
To detect this cases earlier we add the option to the testcases with the
exception of tests that will currently fail with this option. PR 27456 keeps
track of this failures.

No code review, as discussed with Hal Finkel.

llvm-svn: 277624
2016-08-03 18:17:35 +00:00
Bill Schmidt 34af5e1c76 [PowerPC] Add an MI SSA peephole pass.
This patch adds a pass for doing PowerPC peephole optimizations at the
MI level while the code is still in SSA form.  This allows for easy
modifications to the instructions while depending on a subsequent pass
of DCE.  Both passes are very fast due to the characteristics of SSA.

At this time, the only peepholes added are for cleaning up various
redundancies involving the XXPERMDI instruction.  However, I would
expect this will be a useful place to add more peepholes for
inefficiencies generated during instruction selection.  The pass is
placed after VSX swap optimization, as it is best to let that pass
remove unnecessary swaps before performing any remaining clean-ups.

The utility of these clean-ups are demonstrated by changes to four
existing test cases, all of which now have tighter expected code
generation.  I've also added Eric Schweiz's bugpoint-reduced test from
PR25157, for which we now generate tight code.  One other test started
failing for me, and I've fixed it
(test/Transforms/PlaceSafepoints/finite-loops.ll) as well; this is not
related to my changes, and I'm not sure why it works before and not
after.  The problem is that the CHECK-NOT: of "statepoint" from test1
fails because of the "statepoint" in test2, and so forth.  Adding a
CHECK-LABEL in between keeps the different occurrences of that string
properly scoped.

llvm-svn: 252651
2015-11-10 21:38:26 +00:00
Bill Schmidt 15deb803b4 [PPC64LE] More improvements to VSX swap optimization
This patch allows VSX swap optimization to succeed more frequently.
Specifically, it is concerned with common code sequences that occur
when copying a scalar floating-point value to a vector register.  This
patch currently handles cases where the floating-point value is
already in a register, but does not yet handle loads (such as via an
LXSDX scalar floating-point VSX load).  That will be dealt with later.

A typical case is when a scalar value comes in as a floating-point
parameter.  The value is copied into a virtual VSFRC register, and
then a sequence of SUBREG_TO_REG and/or COPY operations will convert
it to a full vector register of the class required by the context.  If
this vector register is then used as part of a lane-permuted
computation, the original scalar value will be in the wrong lane.  We
can fix this by adding a swap operation following any widening
SUBREG_TO_REG operation.  Additional COPY operations may be needed
around the swap operation in order to keep register assignment happy,
but these are pro forma operations that will be removed by coalescing.

If a scalar value is otherwise directly referenced in a computation
(such as by one of the many XS* vector-scalar operations), we
currently disable swap optimization.  These operations are
lane-sensitive by definition.  A MentionsPartialVR flag is added for
use in each swap table entry that mentions a scalar floating-point
register without having special handling defined.

A common idiom for PPC64LE is to convert a double-precision scalar to
a vector by performing a splat operation.  This ensures that the value
can be referenced as V[0], as it would be for big endian, whereas just
converting the scalar to a vector with a SUBREG_TO_REG operation
leaves this value only in V[1].  A doubleword splat operation is one
form of an XXPERMDI instruction, which takes one doubleword from a
first operand and another doubleword from a second operand, with a
two-bit selector operand indicating which doublewords are chosen.  In
the general case, an XXPERMDI can be permitted in a lane-swapped
region provided that it is properly transformed to select the
corresponding swapped values.  This transformation is to reverse the
order of the two input operands, and to reverse and complement the
bits of the selector operand (derivation left as an exercise to the
reader ;).

A new test case that exercises the scalar-to-vector and generalized
XXPERMDI transformations is added as CodeGen/PowerPC/swaps-le-5.ll.
The patch also requires a change to CodeGen/PowerPC/swaps-le-3.ll to
use CHECK-DAG instead of CHECK for two independent instructions that
now appear in reverse order.

There are two small unrelated changes that are added with this patch.
First, the XXSLDWI instruction was incorrectly omitted from the list
of lane-sensitive instructions; this is now fixed.  Second, I observed
that the same webs were being rejected over and over again for
different reasons.  Since it's sufficient to reject a web only once, I
added a check for this to speed up the compilation time slightly.

llvm-svn: 242081
2015-07-13 22:58:19 +00:00