Even if an output is not a dynamic object, the output may have
.{preinit,init,fini} sections. Therefore, managing these sections
as Out<ELFT>::Dynamic's members is not correct.
llvm-svn: 278093
Not all relocations from a .eh_frame that point to an executable
section should be ignored. In particular, the relocation finding the
personality function should not.
This is a reduction from trying to bootstrap a static lld on linux.
llvm-svn: 276329
This patch simplifies output section management by making
Factory class have ownership of sections that creates.
Differential Revision: https://reviews.llvm.org/D22575
llvm-svn: 276141
The identifier `Version` was used too often in the code to handle
symbol versions. The struct that contains version definitions is
named `Version`. Local variables for version ID are named `Version`.
Local varaible for version string are named `Version`.
This patch give them different names.
llvm-svn: 275673
Previously, Verdefs and Verdauxs are separated in the section.
The new layout is easier to write as we do not have to maintain
two pointers and can avoid passing a reference to a pointer.
llvm-svn: 275665
ELF spec says that alignment of 0 is equivalent to 1.
Previously, we arbitrary set to 0 or 1, but always setting to 1
makes our program simpler.
llvm-svn: 275374
Since linkerscript should create sections by itself
(if SECTIONS command is present),
then we might want to reuse the OutputSectionFactory (D19976 already do that now),
so this patch moves it out from writer cpp file for that purpose.
Differential revision: http://reviews.llvm.org/D19977
llvm-svn: 275161
The patch adds one more partition to the MIPS GOT. This time it is for
TLS related GOT entries. Such entries are located after 'local' and 'global'
ones. We cannot get a final offset for these entries at the time of
creation because we do not know size of 'local' and 'global' partitions.
So we have to adjust the offset later using `getMipsTlsOffset()` method.
All MIPS TLS relocations which need GOT entries operates MIPS style GOT
offset - 'offset from the GOT's beginning' - MipsGPOffset constant. That
is why I add new types of relocation expressions.
One more difference from othe ABIs is that the MIPS ABI does not support
any TLS relocation relaxations. I decided to make a separate function
`handleMipsTlsRelocation` and put MIPS TLS relocation handling code
there. It is similar to `handleTlsRelocation` routine and duplicates its
code. But it allows to make the code cleaner and prevent pollution of
the `handleTlsRelocation` by MIPS 'if' statements.
Differential Revision: http://reviews.llvm.org/D21606
llvm-svn: 273569
Peter Smith found while trying to support thunk creation for ARM that
LLD sometimes creates broken thunks for MIPS. The cause of the bug is
that we assign file offsets to input sections too early. We need to
create all sections and then assign section offsets because appending
thunks changes file offsets for all following sections.
This patch separates the pass to assign file offsets from thunk
creation pass. This effectively reverts r265673.
Differential Revision: http://reviews.llvm.org/D21598
llvm-svn: 273532
With fix:
-soname flag was not set in testcase. Hash calculated for base def was different on local
and bot machines because filename fos used for calculating.
Initial commit message:
Patch implements basic support of versioned symbols.
There is no wildcards patterns matching except local: *;
There is no support for hierarchies.
There is no support for symbols overrides (@ vs @@ not handled).
This patch allows programs that using simple scripts to link and run.
Differential revision: http://reviews.llvm.org/D21018
llvm-svn: 273152
Patch implements basic support of versioned symbols.
There is no wildcards patterns matching except local: *;
There is no support for hierarchies.
There is no support for symbols overrides (@ vs @@ not handled).
This patch allows programs that using simple scripts to link and run.
Differential revision: http://reviews.llvm.org/D21018
llvm-svn: 273143
There are two motivations for this patch. The first one is a preparation
for support MIPS TLS relocations. It might sound like a joke but for GOT
entries related to TLS relocations MIPS ABI uses almost regular approach
with creation of dynamic relocations for each GOT enty etc. But we need
to separate these 'regular' TLS related entries from MIPS specific local
and global parts of GOT. ABI declare simple solution - all TLS related
entries allocated at the end of GOT after local/global parts. The second
motivation it to support GOT relocations for non-preemptible symbols
with addends. If we have more than one GOT relocations against symbol S
with different addends we need to create GOT entries for each unique
Symbol/Addend pairs.
So we store all MIPS GOT entries in separate containers. For non-preemptible
symbols we have to maintain two data structures. The first one is MipsLocal
vector. Each entry corresponds to the GOT entry from the 'local' part
of the GOT contains the symbol's address plus addend. The second one
is MipsLocalMap. It is a map from Symbol/Addend pair to the GOT index.
Differential Revision: http://reviews.llvm.org/D21297
llvm-svn: 273127
I think it is me who named these variables, but I always find that
they are slightly confusing because align is a verb.
Adding four letters is worth it.
llvm-svn: 272984
MergedInputSection::getOffset is the busiest function in LLD if string
merging is enabled and input files have lots of mergeable sections.
It is usually the case when creating executable with debug info,
so it is pretty common.
The reason why it is slow is because it has to do faily complex
computations. For non-mergeable sections, section contents are
contiguous in output, so in order to compute an output offset,
we only have to add the output section's base address to an input
offset. But for mergeable strings, section contents are split for
merging, so they are not contigous. We've got to do some lookups.
We used to do binary search on the list of section pieces.
It is slow because I think it's hostile to branch prediction.
This patch replaces it with hash table lookup. Seems it's working
pretty well. Below is "perf stat -r10" output when linking clang
with debug info. In this case this patch speeds up about 4%.
Before:
6584.153205 task-clock (msec) # 1.001 CPUs utilized ( +- 0.09% )
238 context-switches # 0.036 K/sec ( +- 6.59% )
0 cpu-migrations # 0.000 K/sec ( +- 50.92% )
1,067,675 page-faults # 0.162 M/sec ( +- 0.15% )
18,369,931,470 cycles # 2.790 GHz ( +- 0.09% )
9,640,680,143 stalled-cycles-frontend # 52.48% frontend cycles idle ( +- 0.18% )
<not supported> stalled-cycles-backend
21,206,747,787 instructions # 1.15 insns per cycle
# 0.45 stalled cycles per insn ( +- 0.04% )
3,817,398,032 branches # 579.786 M/sec ( +- 0.04% )
132,787,249 branch-misses # 3.48% of all branches ( +- 0.02% )
6.579106511 seconds time elapsed ( +- 0.09% )
After:
6312.317533 task-clock (msec) # 1.001 CPUs utilized ( +- 0.19% )
221 context-switches # 0.035 K/sec ( +- 4.11% )
1 cpu-migrations # 0.000 K/sec ( +- 45.21% )
1,280,775 page-faults # 0.203 M/sec ( +- 0.37% )
17,611,539,150 cycles # 2.790 GHz ( +- 0.19% )
10,285,148,569 stalled-cycles-frontend # 58.40% frontend cycles idle ( +- 0.30% )
<not supported> stalled-cycles-backend
18,794,779,900 instructions # 1.07 insns per cycle
# 0.55 stalled cycles per insn ( +- 0.03% )
3,287,450,865 branches # 520.799 M/sec ( +- 0.03% )
72,259,605 branch-misses # 2.20% of all branches ( +- 0.01% )
6.307411828 seconds time elapsed ( +- 0.19% )
Differential Revision: http://reviews.llvm.org/D20645
llvm-svn: 270999
This patch addresses a post-commit review for r270325. r270325
introduced getReloc function that searches a relocation for a
given range. It always started searching from beginning of relocation
vector, so it was slower than before. Previously, we used to use
the fact that the relocations are sorted. This patch restore it.
llvm-svn: 270572
.eh_frame_hdr assumes that there is only one .eh_frame and
ensures it by assertions. This patch makes .eh_frame a real
singleton object to simplify.
llvm-svn: 270445
Previously, EhFrameHdr section computed addresses to which FDEs are
applied to. This is not an ideal design because EhFrameHdr does not
know much about FDEs unless EhFrame passes the information to EhFrameHdr.
It is what we did.
This patch simplifies the code by making EhFrame to compute the
values and pass the cooked information to EhFrameHdr. EhFrameHdr no
longer have to know about the details of FDEs such as FDE encodings.
llvm-svn: 270393
This patch refactors EHOutputSection using SectionPiece struct.
EHRegion class was removed since we can now directly use SectionPiece.
An incomplete support of large CIE/FDE record (> 2^32 bytes) was removed
because it silently created broken executable. There are several places
in the existing code that "size" field is always 4 bytes and at offset 4
in the record, which is not true for 64-bit size records. We will have to
support that in future, but it is better to error out instead of creating
malformed eh_frame sections.
llvm-svn: 270382
This fixes a potential bug when cross linking very large executables
on LLP64 machines such as Windows. On such platform, uintX_t is 64 bits
while unsigned is 32 bits.
llvm-svn: 270327
If you specify the option in the form of --build-id=0x<hexstring>,
that hexstring is set as a build ID. We observed that the feature
is actually in use in some builds, so we want this feature.
llvm-svn: 269495
This is the option which sorts relocs to optimize dynamic linker performance.
-z combelocs is the default in gold, also it ignores -z nocombreloc,
this patch do the same.
Patch sorts relocations by symbols only and do not create any
DT_REL[A]COUNT entries. That is different with what gold/bfd do.
More information about option is here:
http://www.airs.com/blog/archives/186http://people.redhat.com/jakub/prelink.pdf, p.2
Differential revision: http://reviews.llvm.org/D19528
llvm-svn: 269066
We were previously using an output offset of -1 for both GC'd and tail
merged pieces. We need to distinguish these two cases in order to filter
GC'd symbols from the symbol table -- we were previously asserting when we
asked for the VA of a symbol pointing into a dead piece, which would end
up asking the tail merging string table for an offset even though we hadn't
initialized it properly.
This patch fixes the bug by using an offset of -1 to exclusively mean GC'd
pieces, using 0 for tail merges, and distinguishing the tail merge case from
an offset of 0 by asking the output section whether it is tail merge.
Differential Revision: http://reviews.llvm.org/D19953
llvm-svn: 268604
MIPS N64 ABI introduces .MIPS.options section which specifies miscellaneous
options to be applied to an object/shared/executable file. LLVM as well as
modern versions of GNU tools read and write the only type of the options -
ODK_REGINFO. It is exact copy of .reginfo section used by O32 ABI.
llvm-svn: 268485
This change simplifies the BuildId classes by removing a few member
functions and variables from them. It should also make it easy to
parallelize hash computation in future because now each BuildId object
see all inputs rather than one at a time.
llvm-svn: 268333
This reverts commit r266618. It breaks basically everything.
I think VS2013 doesn't interpret this code in the same way.
The size field (at least) is left uninitialized, causing all sorts of havok
(e.g. creating a 34GB file for a trivial hello world program).
The offending compiler reports itself as follows:
c:\release-vs2013>cl /?
Microsoft (R) C/C++ Optimizing Compiler Version 18.00.40629 for x64
Copyright (C) Microsoft Corporation. All rights reserved.
llvm-svn: 266857
With this patch we use the first scan over the relocations to remember
the information we found about them: will them be relaxed, will a plt be
used, etc.
With that the actual relocation application becomes much simpler. That
is particularly true for the interfaces in Target.h.
This unfortunately means that we now do two passes over relocations for
non SHF_ALLOC sections. I think this can be solved by factoring out the
code that scans a single relocation. It can then be used both as a scan
that record info and for a dedicated direct relocation of non SHF_ALLOC
sections.
I also think it is possible to reduce the number of enum values by
representing a target with just an OutputSection and an offset (which
can be from the start or end).
This should unblock adding features like relocation optimizations.
llvm-svn: 266158
Previously, we supported only one hash function, FNV-1, so
BuildIdSection directly handled hash computation. In this patch,
I made BuildIdSection an abstract class and defined two subclasses,
BuildIdFnv1 and BuildIdMd5.
llvm-svn: 265737
This requires knowing input section offsets in output sections before
scanRelocs. This is generally a good thing and should allow further
simplifications in the creation of dynamic relocations.
llvm-svn: 265673
Some targets might require creation of thunks. For example, MIPS targets
require stubs to call PIC code from non-PIC one. The patch implements
infrastructure for thunk code creation and provides support for MIPS
LA25 stubs. Any MIPS PIC code function is invoked with its address
in register $t9. So if we have a branch instruction from non-PIC code
to the PIC one we cannot make the jump directly and need to create a small
stub to save the target function address.
See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
- In relocation scanning phase we ask target about thunk creation necessity
by calling `TagetInfo::needsThunk` method. The `InputSection` class
maintains list of Symbols requires thunk creation.
- Reassigning offsets performed for each input sections after relocation
scanning complete because position of each section might change due
thunk creation.
- The patch introduces new dedicated value for DefinedSynthetic symbols
DefinedSynthetic::SectionEnd. Synthetic symbol with that value always
points to the end of the corresponding output section. That allows to
escape updating synthetic symbols if output sections sizes changes after
relocation scanning due thunk creation.
- In the `InputSection::writeTo` method we write thunks after corresponding
input section. Each thunk is written by calling `TargetInfo::writeThunk` method.
- The patch supports the only type of thunk code for each target. For now,
it is enough.
Differential Revision: http://reviews.llvm.org/D17934
llvm-svn: 265059
Local symbol which requires GOT entry initialized by "page" address.
This address is high 16 bits of sum of the symbol value and the relocation
addend. In the relocation scanning phase final values of symbols are unknown
so to reduce number of allocated GOT entries do the following trick. Save
all output sections referenced by GOT relocations during the relocation
scanning phase. Then later in the `GotSection::finalize` method calculate
number of "pages" required to cover all saved output sections and allocate
appropriate number of GOT entries. We assume the worst case - each 64kb
page of the output section has at least one GOT relocation against it.
Differential Revision: http://reviews.llvm.org/D18349
llvm-svn: 264730
Now local symbols have SymbolBody so we can handle all kind of symbols
in the GotSection::addEntry method. The patch moves the code from
addMipsLocalEntry to addEntry. NFC.
Differential Revision: http://reviews.llvm.org/D18302
llvm-svn: 264032
We want to make SymbolBody the central place to query symbol information.
This patch also renames canBePreempted to isPreemptible because I feel that
the latter is slightly better (the former is three words and the latter
is two words.)
llvm-svn: 263386
This patch implements --build-id. After the linker creates an output file
in the memory buffer, it computes the FNV1 hash of the resulting file
and set the hash to the .note section as a build-id.
GNU ld and gold have the same feature, but their default choice of the
hash function is different. Their default is SHA1.
We made a deliberate choice to not use a secure hash function for the
sake of performance. Computing a secure hash is slow -- for example,
MD5 throughput is usually 400 MB/s or so. SHA1 is slower than that.
As a result, if you pass --build-id to gold, then the linker becomes about
10% slower than that without the option. We observed a similar degradation
in an experimental implementation of build-id for LLD. On the other hand,
we observed only 1-2% performance degradation with the FNV hash.
Since build-id is not for digital certificate or anything, we think that
a very small probability of collision is acceptable.
We considered using other signals such as using input file timestamps as
inputs to a secure hash function. But such signals would have an issue
with build reproducibility (if you build a binary from the same source
tree using the same toolchain, the build id should become the same.)
GNU linkers accepts --build-id=<style> option where style is one of
"MD5", "SHA1", or an arbitrary hex string. That option is out of scope
of this patch.
http://reviews.llvm.org/D18091
llvm-svn: 263292
It was a badly specified hack for when a tls relocation should be
propagated to the dynamic relocation table.
This replaces it with a not as bad hack of saying that a local dynamic
tls relocation is never preempted.
I will try to remove even that second hack in the next patch.
llvm-svn: 262955
There was a known limitation for -r option:
relocations against local symbols were not supported.
For example rel[a].eh_frame sections contained relocations against sections
and that was not supported for -r before. Patch fixes that.
Differential review: http://reviews.llvm.org/D17813
llvm-svn: 262590
For shared libraries we allow any weak undefined symbol to eventually be
resolved, even if we never see a definition in another .so. This matches
the behavior when handling other undefined symbols in a shared library.
For executables, we require seeing a definition in a .so or resolve it
to zero. This is also similar to how non weak symbols are handled.
llvm-svn: 262017
-r, -relocatable - Generate relocatable output
Currently does not have support for files containing
relocation sections with entries that refer to local
symbols (like rel[a].eh_frame which refer to sections
and not to symbols)
Differential revision: http://reviews.llvm.org/D14382
llvm-svn: 261838
There is nothing aarch64 specific in here. If a symbol can be preempted,
we need to copy the full relocation to the dynamic linker.
If a symbol cannot be preempted, we can make the dynamic linker life
easier and produce a relative relocation.
This is directly equivalent to R_X86_64_64 to R_x86_64_RELATIVE
conversion.
llvm-svn: 261678
This patch fixes the R_AARCH64_ABS64 relocation when used in shared mode,
where it requires a dynamic R_AARCH64_RELATIVE relocation. To correct set
the addend on the dynamic relocation (since it will be used by the dynamic
linker), a new TargetInfo specific hook was created (getDynRelativeAddend)
to get the correct addend based on relocation type.
The patch fixes the issues when creating shared library code against
{init,fini}_array, where it issues R_AARCH64_ABS64 relocation against
local symbols.
llvm-svn: 261651
This reduces the .rodata of scyladb from 4501932 to 4334639 bytes (1.038
times smaller).
I don't think it is critical to support tail merging, just exact
duplicates, but given the code organization it was actually a bit easier
to support both.
llvm-svn: 261327
Previously, we added garbage-collected symbols to the symbol table
and filter them out when we were writing symbols to the file. In
this patch, garbage-collected symbols are filtered out from beginning.
llvm-svn: 261064
IMHO this makes the code easier to read and should help with linker
scripts.
This is strongly based on D16575. The main differences are:
We record a range of sections, not every section in a program header.
scanHeaders takes case of deciding what goes in every program header,
including PT_GNU_RELRO
We create dummy sections for the start of the file
With this, program header creation has 3 isolated stages:
Map sections to program headers.
Assign addresses to *sections*
Looking at sections find the address and size of each program header.
Thanks to George Rimar for the initial version.
llvm-svn: 260453
The previous names contained "Local" and "Current", but what we
are handling is always local and current, so they were redundant.
TlsIndex comes from "tls_index" struct that Ulrich Drepper is using
in this document to describe this data structure in GOT.
llvm-svn: 259852
Another case where we currently have almost duplicated code is the
creation of dynamic relocations. First to decide if we need one, then to
decide what to write.
This patch fixes it by passing more information from the relocation scan
to the section writing code. This is the same idea used for r258723.
I actually think it should be possible to simplify this further by
reordering things a bit in the writer. For example, we should be able to
represent almost every position in the file with an OutputSeciton and
offset. When writing it out we then just need to add the offset to the
OutputSection VA.
llvm-svn: 259829
Previously, the methods to get symbol addresses were somewhat scattered
in many places. You can use getEntryAddr returns the address of the symbol,
but if you want to get the GOT address for the symbol, you needed to call
Out<ELFT>::Got->getEntryAddr(Sym). This change adds new functions, getVA,
getGotVA, getGotPltVA, and getPltVA to SymbolBody, so that you can use
SymbolBody as the central place to ask about symbols.
http://reviews.llvm.org/D16710
llvm-svn: 259404
This avoids the need to have reserve and addString in sync.
We avoid hashing the global symbols again. This means that we don't
merge a global symbol that has the same name as some other string, but
that doesn't seem very common. The string table size is the same in
clang an scylladb with or without hashing global symbols again.
llvm-svn: 259136
There are a few cases where we have almost duplicated code.
This patches fixes the simplest: the finalize and write of dynamic
section. Right now they have to have exactly the same structure to
decide if a DT_* entry is needed and then to actually write it.
We cannot just write it to a std::vector in the first pass since
addresses have not been computed yet.
llvm-svn: 258723
Summary: It looks like this snuck through in r256143/D15383.
Reviewers: ruiu, grimar
Differential Revision: http://reviews.llvm.org/D16500
llvm-svn: 258599
Some MIPS relocation (for now R_MIPS_GOT16) requires creation of GOT
entries for symbol not included in the dynamic symbol table. They are
local symbols and non-local symbols with 'local' visibility. Local GOT
entries occupy continuous block between GOT header and regular GOT
entries.
The patch adds initial support for handling local GOT entries. The main
problem is allocating local GOT entries for local symbols. Such entries
should be initialized by high 16-bit of the symbol value. In ideal world
there should be no duplicated entries with the same values. But at the
moment of the `Writer::scanRelocs` call we do not know a value of the
symbol. In this patch we create new local GOT entry for each relocation
against local symbol, though we can exhaust GOT quickly. That needs to
be optimized later. When we calculate relocation we know a final symbol
value and request local GOT entry index. To do that we maintain map
between addresses and local GOT entry indexes. If we start to calculate
relocations in parallel we will have to serialize access to this map.
Differential Revision: http://reviews.llvm.org/D16324
llvm-svn: 258388
Added check for terminator CIE/FDE which has zero data size.
void EHOutputSection<ELFT>::addSectionAux(
...
// If CIE/FDE data length is zero then Length is 4, this
// shall be considered a terminator and processing shall end.
if (Length == 4)
break;
...
After this "Bug 25923 - lld/ELF2 linked application crashes if exceptions were used." is fixed for me. Self link of clang also works.
Initial commit message:
[ELF] - implemented --eh-frame-hdr command line option.
--eh-frame-hdr
Request creation of ".eh_frame_hdr" section and ELF "PT_GNU_EH_FRAME" segment header.
Both gold and the GNU linker support an option --eh-frame-hdr which tell them to construct a header for all the .eh_frame sections. This header is placed in a section named .eh_frame_hdr and also in a PT_GNU_EH_FRAME segment. At runtime the unwinder can find all the PT_GNU_EH_FRAME segments by calling dl_iterate_phdr.
This section contains a lookup table for quick binary search of FDEs.
Detailed info can be found here:
http://www.airs.com/blog/archives/462
Differential revision: http://reviews.llvm.org/D15712
llvm-svn: 257889
--eh-frame-hdr
Request creation of ".eh_frame_hdr" section and ELF "PT_GNU_EH_FRAME" segment header.
Both gold and the GNU linker support an option --eh-frame-hdr which tell them to construct a header for all the .eh_frame sections. This header is placed in a section named .eh_frame_hdr and also in a PT_GNU_EH_FRAME segment. At runtime the unwinder can find all the PT_GNU_EH_FRAME segments by calling dl_iterate_phdr.
This section contains a lookup table for quick binary search of FDEs.
Detailed info can be found here:
http://www.airs.com/blog/archives/462
Differential revision: http://reviews.llvm.org/D15712
llvm-svn: 257753
String tables in unstripped executable files are fairly large in size.
For example, lld's executable file is about 34.4 MB in my environment,
and of which 3.5 MB is the string table. Efficiency of string table
construction matters.
Previously, the string table was built in an inefficient way. We used
StringTableBuilder to build that and enabled string tail merging,
although tail merging is not effective for the symbol table (you can
only make the string table 0.3% smaller for lld.) Tail merging is
computation intensive task and slow.
This patch eliminates string tail merging.
I changed the way of adding strings to the string table in this patch
too. Previously, strings were added using add() and the same strings
were then passed to getOffset() to get their offsets in the string table.
In this way, getOffset() needs to look up a hash table to get offsets
for given strings. This is a violation of "we look up the symbol table
(or a hash table) only once for each symbol" dogma of the new LLD's
design. Hash table lookup for long C++ mangled names is slow.
I eliminated that lookup in this patch.
In total, this patch improves link time of lld itself about 12%
(3.50 seconds -> 3.08 seconds.)
llvm-svn: 257017
MipsReginfoInputSection is basically just a container of Elf_Mips_Reginfo
struct. This patch makes that struct directly accessible from others.
llvm-svn: 256984
The number of output sections is usually limited, so the cost
of allocating them is not a bottleneck. This patch simplifies
the code by removing the allocators.
llvm-svn: 256437
OutputSectionBase already has virtual member functions.
This patch makes addSection() a virtual function to remove code
from Writer::createSections().
llvm-svn: 256436
I am working on adding LTO support to the new ELF lld.
In order to do that, it will be necessary to represent defined and
undefined symbols that are not from ELF files. One way to do it is to
change the symbol hierarchy to look like
Defined : SymbolBody
Undefined : SymbolBody
DefinedElf<ELFT> : Defined
UndefinedElf<ELFT> : Undefined
Another option would be to use bogus Elf_Sym, but I think that is
getting a bit too hackish.
This patch does the Undefined/UndefinedElf. Split. The next one
will do the Defined/DefinedElf split.
llvm-svn: 256289
This patch changes sequence of applying relocations, moving tls optimized relocation handling code before code for other locals.
Without that change relocation @GOTTPOFF against local symbol caused runtime error ("unrecognized reloc ...").
That change also should fix other tls optimized relocations, but I did not check them, that's a field for another patch.
R_X86_64_GOTTPOFF relocations against locals can be found when linking against libc.a(malloc.o):
000000000036 000600000016 R_X86_64_GOTTPOFF 0000000000000000 libc_tsd_MALLOC - 4
000000000131 000600000016 R_X86_64_GOTTPOFF 0000000000000000 libc_tsd_MALLOC - 4
Differential revision: http://reviews.llvm.org/D15581
llvm-svn: 256145
This relocation is similar to R_*_RELATIVE except that the value used in this relocation is the program address returned by the function, which takes no arguments, at the address of
the result of the corresponding R_*_RELATIVE relocation as specified in the processor-specific ABI. The purpose of this relocation to avoid name lookup for locally defined STT_GNU_IFUNC symbols at load-time.
More info can be found in ifunc.txt from https://sites.google.com/site/x32abi/documents.
Differential revision: http://reviews.llvm.org/D15235
llvm-svn: 256144
R_386_GOTOFF is calculated as S + A - GOT, where:
S - Represents the value of the symbol whose index resides in the relocation entry.
A - Represents the addend used to compute the value of the relocatable field.
GOT - Represents the address of the global offset table.
Differential revision: http://reviews.llvm.org/D15383
llvm-svn: 256143
MIPS .reginfo section provides information on the registers used by
the code in the object file. Linker should collect this information and
write .reginfo section in the output file. This section contains a union
of used registers masks taken from input .reginfo sections and final
value of the `_gp` symbol.
For details see the "Register Information" section in Chapter 4 in the
following document:
ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
The patch implements .reginfo sections handling with a couple missed
features: a) it does not put output .reginfo section into the separate
REGINFO segment; b) it does not merge `ri_cprmask` masks from input
section. These features will be implemented later.
Differential Revision: http://reviews.llvm.org/D15669
llvm-svn: 256119
Main aim of the patch to introduce basic support for TLS access models for x86 target.
Models using @tlsgd, @tlsldm and @gotntpoff are implemented.
Differential revision: http://reviews.llvm.org/D15060
llvm-svn: 254500
Combination of @tlsgd and @gottpoff at the same time leads to miss of R_X86_64_TPOFF64 dynamic relocation. Patch fixes that.
@tlsgd(%rip) - Allocate two contiguous entries in the GOT to hold a tls index
structure (for passing to tls get addr).
@gottpoff(%rip) - Allocate one GOT entry to hold a variable offset in initial TLS
block (relative to TLS block end, %fs:0).
The same situation can be observed for x86 (probably others too, not sure) with corresponding for that target relocations: @tlsgd, @gotntpoff.
Differential revision: http://reviews.llvm.org/D15105
llvm-svn: 254443
Fix was:
uint32_t getLocalTlsIndexVA() { return getVA() + LocalTlsIndexOff; }
=>
uint32_t getLocalTlsIndexVA() { return Base::getVA() + LocalTlsIndexOff; }
Both works for my MSVS.
Original commit message:
[ELF] - Refactor of tls_index implementation for tls local dynamic model.
Patch contains the next 2 changes:
1) static variable Out<ELFT>::LocalModuleTlsIndexOffset moved to Out<ELFT>::Got. At fact there is no meaning for it to be separated from GOT class because at each place of using it anyways needs to call GOT`s getVA(). Also it is impossible to have that offset and not have GOT.
2) addLocalModuleTlsIndex -> addLocalModelTlsIndex (word "Module" changed to "Model"). Not sure was it a mistype or not but I think that update is closer to Urlich terminology.
Differential revision: http://reviews.llvm.org/D15113
llvm-svn: 254433
It failed buildbot:
http://lab.llvm.org:8011/builders/llvm-clang-lld-x86_64-scei-ps4-ubuntu-fast/builds/3782/steps/build/logs/stdio
Target.cpp
In file included from /home/buildbot/Buildbot/Slave/llvm-clang-lld-x86_64-scei-ps4-ubuntu-fast/llvm.src/tools/lld/ELF/Target.cpp:20:
/home/buildbot/Buildbot/Slave/llvm-clang-lld-x86_64-scei-ps4-ubuntu-fast/llvm.src/tools/lld/ELF/OutputSections.h:136:42: error: use of undeclared identifier 'getVA'
uint32_t getLocalTlsIndexVA() { return getVA() + LocalTlsIndexOff; }
llvm-svn: 254432
Patch contains the next 2 changes:
1) static variable Out<ELFT>::LocalModuleTlsIndexOffset moved to Out<ELFT>::Got. At fact there is no meaning for it to be separated from GOT class because at each place of using it anyways needs to call GOT`s getVA(). Also it is impossible to have that offset and not have GOT.
2) addLocalModuleTlsIndex -> addLocalModelTlsIndex (word "Module" changed to "Model"). Not sure was it a mistype or not but I think that update is closer to Urlich terminology.
Differential revision: http://reviews.llvm.org/D15113
llvm-svn: 254428
Splitted writeTo to separate tls relocs handling stuff which is too long for one method now. NFC.
Differential revision: http://reviews.llvm.org/D15012
llvm-svn: 254309
Patch implements lazy relocations for x86.
One of features of x86 is that executable files and shared object files have separate procedure linkage tables. So patch implements both cases.
Detailed information about instructions used can be found in http://docs.oracle.com/cd/E19620-01/805-3050/chapter6-1235/index.html (search: x86: Procedure Linkage Table).
Differential revision: http://reviews.llvm.org/D14955
llvm-svn: 254098
The MIPS target requires specific dynamic section entries to be defined.
* DT_MIPS_RLD_VERSION and DT_MIPS_FLAGS store predefined values.
* DT_MIPS_BASE_ADDRESS holds base VA.
* DT_MIPS_LOCAL_GOTNO holds the number of local GOT entries.
* DT_MIPS_SYMTABNO holds the number of .dynsym entries.
* DT_MIPS_GOTSYM holds the index of the .dynsym entry
which corresponds to the first entry of the global part of GOT.
* DT_MIPS_RLD_MAP holds the address of the reserved space in the data segment.
* DT_MIPS_PLTGOT points to the .got.plt section if it exists.
* DT_PLTGOT holds the address of the GOT section.
See "Dynamic Section" in Chapter 5 in the following document for detailed
description: ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
Differential revision: http://reviews.llvm.org/D14450
llvm-svn: 252857
This adds support for:
* Uniquing CIEs
* Dropping FDEs that point to dropped sections
It drops 657 488 bytes from the .eh_frame of a Release+Asserts clang.
The link time impact is smallish. Linking clang with a Release+Asserts
lld goes from 0.488064805 seconds to 0.504763060 seconds (1.034 X slower).
llvm-svn: 252790
leaq symbol@tlsld(%rip), %rdi
call __tls_get_addr@plt
symbol@tlsld (R_X86_64_TLSLD) instructs the linker to generate a tls_index entry (two GOT slots) in the GOT for the entire module (shared object or executable) with an offset of 0. The symbol for this GOT entry doesn't matter (as long as it's either local to the module or null), and gold doesn't put a symbol in the dynamic R_X86_64_DTPMOD64 relocation for the GOT entry.
All other platforms defined in http://www.akkadia.org/drepper/tls.pdf except for Itanium use a similar model where global and local dynamic GOT entries take up 2 contiguous GOT slots, so we can handle this in a unified manner if we don't care about Itanium.
While scanning relocations we need to identify local dynamic relocations and generate a single tls_index entry in the GOT for the module and store the address of it somewhere so we can later statically resolve the offset for R_X86_64_TLSLD relocations. We also need to generate a R_X86_64_DTPMOD64 relocation in the RelaDyn relocation section.
This implementation is a bit hacky. It side steps the issue of GotSection and RelocationSection only handling SymbolBody entries by relying on a specific relocation type. The alternative to this seemed to be completely rewriting how GotSection and RelocationSection work, or using a different hacky signaling method.
llvm-svn: 252682
This is cleaner than computing relocations as if we had done it.
While at it, keep a single Phdr variable instead of multiple fields of it.
llvm-svn: 252352
This patch implements R_MIPS_GOT16 relocation for global symbols in order to
generate some entries in GOT. Only reserved and global entries are supported
for now. For the detailed description about GOT in MIPS, see "Global Offset
Table" in Chapter 5 in the followin document:
ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
In addition, the platform specific symbol "_gp" is added, see "Global Data
Symbols" in Chapter 6 in the aforementioned document.
Differential revision: http://reviews.llvm.org/D14211
llvm-svn: 252275
For x86-64 the initial executable TLS block is placed directly before the
thread specific data register so compilers can directly access it via
R_X86_64_TPOFF32. Generate the correct (negative) offset for this case.
llvm-svn: 252131
This does not support TPOFF32 relocations to local symbols as the address calculations are separate. Support for this will be a separate patch.
llvm-svn: 251998
It is the GNU hash table section that should be reaponsible for storing its own
data and applying its requirements for the order to dynamic symbols.
Differential Revision: http://reviews.llvm.org/D14084
llvm-svn: 251502
getFileOff functions defined for other classes return an offset
from beginning of the file. StringTableSection's getFileOff however
returned an offset from beginning of the section. That was confusing.
llvm-svn: 251192
This patch implements --hash-style command line switch.
* By default, or with "sysv" or "both" parameters, the linker generates
a standard ELF hash section.
* With "gnu" or "both", it produces a GNU-style hash section.
That section requires the symbols in the dynamic symbol table section, which
are referenced in the GNU hash section, to be placed after not hashed ones and
to be sorted to correspond the order of hash buckets in the GNU Hash section.
The division function, as well as estimations for the section's parameters,
are just the first rough attempt and the subjects for further adjustments.
Differential Revision: http://reviews.llvm.org/D13815
llvm-svn: 251000
* Move the responsibility to call SymbolBody::setDynamicSymbolTableIndex()
from the hash table to the dynamic symbol table.
* Hash table is not longer responsible for filling the dynamic symbol table.
* The final order of symbols of both symbol tables is set before writing
phase starts.
* Remove repeaded scan of the symbol table during writting SymbolTableSection.
Differential Revision: http://reviews.llvm.org/D13911
llvm-svn: 250864
The section header table index of the entry that is associated with the section name string table.
Differential Revision: http://reviews.llvm.org/D13904
llvm-svn: 250836
Target has supportsLazyRelocations() method which can switch lazy relocations on/off (currently all targets are OFF except x64 which is ON). So no any other targets are affected now.
Differential Revision: http://reviews.llvm.org/D13856?id=37726
llvm-svn: 250808
Given the name, it is natural for this function to compute the full target.
This will simplify SHF_MERGE handling by allowing getLocalRelTarget to
centralize the addend logic.
llvm-svn: 250731
R_PPC64_TOC does not have an associated symbol, but does have a non-zero VA
that target-specific code must compute using some non-trivial rule. We
handled this as a special case in PPC64TargetInfo::relocateOne, where
we knew to write this special address, but that did not work when creating shared
libraries. The special TOC address needs to be the subject of a
R_PPC64_RELATIVE relocation, and so we also need to know how to encode this
special address in the addend of that relocation.
Thus, some target-specific logic is necessary when creating R_PPC64_RELATIVE as
well. To solve this problem, we teach getLocalRelTarget to handle R_PPC64_TOC
as a special case. This allows us to remove the special case in
PPC64TargetInfo::relocateOne (simplifying code there), and naturally allows the
existing logic to do the right thing when creating associated R_PPC64_RELATIVE
relocations for shared libraries.
llvm-svn: 250555
This patch is to use ELFT instead of Is64Bits to template OutputSection
and its subclasses. This increases code size slightly because it creates
two identical functions for some classes, but that's only 20 KB out of
33 MB, so it's negligible.
This is as per discussion with Rafael. He's not fan of the idea but OK
with this. We'll revisit later to this topic.
llvm-svn: 250466
What was done:
1) .got.plt section is created for functions that requires PLT. .got.plt has 3 predefined empty entries now that are required for dynamic linker.
Also other new items created are configured to have correct jump to PLT[N].
2) PLT section now has PLT[0] entry, also others ones are configured to support PLT->GOT(.got.plt) calls.
3) Implemented .rel[a].plt sections (based on patch http://reviews.llvm.org/D13569).
4) Fixed plt relocations types (based on patch http://reviews.llvm.org/D13589).
NOTES:
The .plt.got zero entry is still empty now. According to ELF specification it should hold the address of the dynamic structure, referenced with the symbol
_DYNAMIC. The _DYNAMIC entry points to the .dynamic section which contains information used by the ELF interpreter to setup the binary.
Differential Revision: http://reviews.llvm.org/D13651
llvm-svn: 250169
Under PPC64 ELF v1 ABI, the symbols associated with each function name don't
point directly to the code in the .text section (or similar), but rather to a
function descriptor structure in a special data section named .opd. The
elements in the .opd structure include a pointer to the actual code, and a the
relevant TOC base value. Both of these are themselves set by relocations.
When we have a local call, we need the relevant relocation to refer directly to
the target code, not to the function-descriptor in the .opd section. Only when
we have a .plt stub do we care about the address of the .opd function
descriptor itself.
So we make a few changes here:
1. Always write .opd first, so that its relocated data values are available
for later use when writing the text sections. Record a pointer to the .opd
structure, and its corresponding buffer.
2. When processing a relative branch relocation under ppc64, if the
destination points into the .opd section, read the code pointer out of the
function descriptor structure and use that instead.
This this, I can link, and run, a dynamically-compiled "hello world"
application on big-Endian PPC64/Linux (ELF v1 ABI) using lld.
llvm-svn: 250122
SymbolTable was not a template class. Instead we had switch-case-based
type dispatch to call desired functions. We had to do that because
SymbolTable was created before we know what ELF type objects had been
passed.
Every time I tried to add a new function to the symbol table, I had to
define a dispatcher which consist of a single switch statement.
It also brought an restriction what the driver can do. For example,
we cannot add undefined symbols before any files are added to the symbol
table. That's because no symbols can be added until the symbol table
knows the ELF type, but when it knows about that, it's too late.
In this patch, the driver makes a decision on what ELF type objects
are being handled. Then the driver creates a SymbolTable object for
an appropriate ELF type.
http://reviews.llvm.org/D13544
llvm-svn: 249902
This reverts commit r249816.
It broke building llvm with lld:
$ ./bin/FileCheck
./bin/FileCheck: error while loading shared libraries: unexpected PLT reloc type 0x06
I think the only thing that is wrong with this patch is that it is too soon.
The plt we create (and its relocs) don't support lazy loading, so they have
to be relocated as ordinary dynamic relocations.
llvm-svn: 249835
.rela.plt contains list of elements in the PLT, which are liable to the relocation during the dynamic linking.
Differential Revision: http://reviews.llvm.org/D13569
llvm-svn: 249816
The size of a .plt entry is different on different targets (it is,
specifically, much larger than 8 on all PPC ABIs). There is no functional
change here (later patches to create .plt entries for PPC64 will depend on this
change).
llvm-svn: 249756
Previously, output sections that are handled specially by the linker
(e.g. PLT or GOT) were created by Writer and passed to other classes
that need them. The problem was that because these special sections
are required by so many classes, the plumbing work became too much
burden.
This patch is to simply make them accessible from anywhere in the
linker to eliminate the plumbing work once and for all.
http://reviews.llvm.org/D13486
llvm-svn: 249590
This is a case that requires --start-group --end-group with regular ELF
linkers. Fortunately it is still possible to handle it with lazy symbols without
taking a second look at archives.
Thanks to Michael Spencer for the bug report.
llvm-svn: 249406
The entries are added if there are "_init" or "_fini" entries in
the symbol table respectively. According to the behavior of ld,
entries are inserted even for undefined symbols.
Symbol names can be overridden by using -init and -fini command
line switches. If used, these switches neither add new symbol table
entries nor require those symbols to be resolved.
Differential Revision: http://reviews.llvm.org/D13385
llvm-svn: 249297
Using the "raw" Elf64_Dyn or Elf32_Dyn structures in
DynamicSection<ELFT>::writeTo does not correctly handle mixed-Endian
situations. Instead, use the corresponding llvm::object::* structures which
have Endian-converting members (like the rest of the code).
This fixes all currently-failing elf2 tests when running on big-Endian
PPC64/Linux (I've added a big-Endian test case which should fail on
little-Endian machines in the same way that test/elf2/shared.s failed on
big-Endian machines prior to this change).
llvm-svn: 249150