Almost all entries inside MIPS GOT are referenced by signed 16-bit
index. Zero entry lies approximately in the middle of the GOT. So the
total number of GOT entries cannot exceed ~16384 for 32-bit architecture
and ~8192 for 64-bit architecture. This limitation makes impossible to
link rather large application like for example LLVM+Clang. There are two
workaround for this problem. The first one is using the -mxgot
compiler's flag. It enables using a 32-bit index to access GOT entries.
But each access requires two assembly instructions two load GOT entry
index to a register. Another workaround is multi-GOT. This patch
implements it.
Here is a brief description of multi-GOT for detailed one see the
following link https://dmz-portal.mips.com/wiki/MIPS_Multi_GOT.
If the sum of local, global and tls entries is less than 64K only single
got is enough. Otherwise, multi-got is created. Series of primary and
multiple secondary GOTs have the following layout:
```
- Primary GOT
Header
Local entries
Global entries
Relocation only entries
TLS entries
- Secondary GOT
Local entries
Global entries
TLS entries
...
```
All GOT entries required by relocations from a single input file
entirely belong to either primary or one of secondary GOTs. To reference
GOT entries each GOT has its own _gp value points to the "middle" of the
GOT. In the code this value loaded to the register which is used for GOT
access.
MIPS 32 function's prologue:
```
lui v0,0x0
0: R_MIPS_HI16 _gp_disp
addiu v0,v0,0
4: R_MIPS_LO16 _gp_disp
```
MIPS 64 function's prologue:
```
lui at,0x0
14: R_MIPS_GPREL16 main
```
Dynamic linker does not know anything about secondary GOTs and cannot
use a regular MIPS mechanism for GOT entries initialization. So we have
to use an approach accepted by other architectures and create dynamic
relocations R_MIPS_REL32 to initialize global entries (and local in case
of PIC code) in secondary GOTs. But ironically MIPS dynamic linker
requires GOT entries and correspondingly ordered dynamic symbol table
entries to deal with dynamic relocations. To handle this problem
relocation-only section in the primary GOT contains entries for all
symbols referenced in global parts of secondary GOTs. Although the sum
of local and normal global entries of the primary got should be less
than 64K, the size of the primary got (including relocation-only entries
can be greater than 64K, because parts of the primary got that overflow
the 64K limit are used only by the dynamic linker at dynamic link-time
and not by 16-bit gp-relative addressing at run-time.
The patch affects common LLD code in the following places:
- Added new hidden -mips-got-size flag. This flag required to set low
maximum size of a single GOT to be able to test the implementation using
small test cases.
- Added InputFile argument to the getRelocTargetVA function. The same
symbol referenced by GOT relocation from different input file might be
allocated in different GOT. So result of relocation depends on the file.
- Added new ctor to the DynamicReloc class. This constructor records
settings of dynamic relocation which used to adjust address of 64kb page
lies inside a specific output section.
With the patch LLD is able to link all LLVM+Clang+LLD applications and
libraries for MIPS 32/64 targets.
Differential revision: https://reviews.llvm.org/D31528
llvm-svn: 334390
I'm proposing a new command line flag, --warn-backrefs in this patch.
The flag and the feature proposed below don't exist in GNU linkers
nor the current lld.
--warn-backrefs is an option to detect reverse or cyclic dependencies
between static archives, and it can be used to keep your program
compatible with GNU linkers after you switch to lld. I'll explain the
feature and why you may find it useful below.
lld's symbol resolution semantics is more relaxed than traditional
Unix linkers. Therefore,
ld.lld foo.a bar.o
succeeds even if bar.o contains an undefined symbol that have to be
resolved by some object file in foo.a. Traditional Unix linkers
don't allow this kind of backward reference, as they visit each
file only once from left to right in the command line while
resolving all undefined symbol at the moment of visiting.
In the above case, since there's no undefined symbol when a linker
visits foo.a, no files are pulled out from foo.a, and because the
linker forgets about foo.a after visiting, it can't resolve
undefined symbols that could have been resolved otherwise.
That lld accepts more relaxed form means (besides it makes more
sense) that you can accidentally write a command line or a build
file that works only with lld, even if you have a plan to
distribute it to wider users who may be using GNU linkers. With
--check-library-dependency, you can detect a library order that
doesn't work with other Unix linkers.
The option is also useful to detect cyclic dependencies between
static archives. Again, lld accepts
ld.lld foo.a bar.a
even if foo.a and bar.a depend on each other. With --warn-backrefs
it is handled as an error.
Here is how the option works. We assign a group ID to each file. A
file with a smaller group ID can pull out object files from an
archive file with an equal or greater group ID. Otherwise, it is a
reverse dependency and an error.
A file outside --{start,end}-group gets a fresh ID when
instantiated. All files within the same --{start,end}-group get the
same group ID. E.g.
ld.lld A B --start-group C D --end-group E
A and B form group 0, C, D and their member object files form group
1, and E forms group 2. I think that you can see how this group
assignment rule simulates the traditional linker's semantics.
Differential Revision: https://reviews.llvm.org/D45195
llvm-svn: 329636
They are to pull out an object file for a symbol, but for a historical
reason the code is written in two separate functions. This patch
merges them.
llvm-svn: 329039
I tried a few different designs to find a way to implement it without
too much hassle and settled down with this. Unlike before, object files
given as arguments for --just-symbols are handled as object files, with
an exception that their section tables are handled as if they were all
null.
Differential Revision: https://reviews.llvm.org/D42025
llvm-svn: 328852
NonLocal is technically more accurate, but we already use the term
"Global" to specify the non-local part of the symbol table, and
Local <-> Global is easier to digest.
llvm-svn: 328740
This fixes pr36623.
The problem is that we have to parse versions out of names before LTO
so that LTO can use that information.
When we get the LTO produced .o files, we replace the previous symbols
with the LTO produced ones, but they still have @ in their names.
We could just trim the name directly, but calling parseSymbolVersion
to do it is simpler.
llvm-svn: 328738
SharedFile::parseRest function grew organically and got a bit hard to
understand. This patch refactor it. This patch also adds comments.
Differential Revision: https://reviews.llvm.org/D44860
llvm-svn: 328579
addElfSymbols and readJustSymbolsFile still has duplicate code, but
I didn't come up with a good idea to eliminate them. Since this patch
is an improvement, I'm sending this for review.
Differential Revision: https://reviews.llvm.org/D44187
llvm-svn: 326972
It should be possible to resolve undefined symbols in dynamic libraries
using symbols defined in a linker script.
Differential Revision: https://reviews.llvm.org/D43011
llvm-svn: 326176
The profailing style in lld seem to be to not include such empty lines.
Clang-tidy/clang-format seem to handle this just fine.
Differential Revision: https://reviews.llvm.org/D43528
llvm-svn: 325629
There seems to be no reason to collect this list of symbols.
Also fix a bug where --exclude-libs would apply to all symbols that
appear in an archive's symbol table, even if the relevant archive
member was not added to the link.
Differential Revision: https://reviews.llvm.org/D43369
llvm-svn: 325380
We did not report valid filename for duplicate symbol error when
symbol came from binary input file.
Patch fixes it.
Differential revision: https://reviews.llvm.org/D42635
llvm-svn: 324217
We normally avoid "switch (Config->EKind)", but in this case I think
it is worth it.
It is only executed when there is an error and it allows detemplating
a lot of code.
llvm-svn: 321404
By using an index instead of a pointer for verdef we can put the index
next to the alignment field. This uses the otherwise wasted area and
reduces the shared symbol size.
By itself the performance change of this is in the noise, but I have a
followup patch to remove another 8 bytes that improves performance
when combined with this.
llvm-svn: 320449
Now that we have only SymbolBody as the symbol class. So, "SymbolBody"
is a bit strange name now. This is a mechanical change generated by
perl -i -pe s/SymbolBody/Symbol/g $(git grep -l SymbolBody lld/ELF lld/COFF)
nd clang-format-diff.
Differential Revision: https://reviews.llvm.org/D39459
llvm-svn: 317370
This is PR34826.
Currently LLD is unable to report line number when reporting
duplicate declaration of some variable.
That happens because for extracting line information we always use
.debug_line section content which describes mapping from machine
instructions to source file locations, what does not help for
variables as does not describe them.
In this patch I am taking the approproate information about
variables locations from the .debug_info section.
Differential revision: https://reviews.llvm.org/D38721
llvm-svn: 317080
Summary:
The COFF linker and the ELF linker have long had similar but separate
Error.h and Error.cpp files to implement error handling. This change
introduces new error handling code in Common/ErrorHandler.h, changes the
COFF and ELF linkers to use it, and removes the old, separate
implementations.
Reviewers: ruiu
Reviewed By: ruiu
Subscribers: smeenai, jyknight, emaste, sdardis, nemanjai, nhaehnle, mgorny, javed.absar, kbarton, fedor.sergeev, llvm-commits
Differential Revision: https://reviews.llvm.org/D39259
llvm-svn: 316624
New lld's files are spread under lib subdirectory, and it isn't easy
to find which files are actually maintained. This patch moves maintained
files to Common subdirectory.
Differential Revision: https://reviews.llvm.org/D37645
llvm-svn: 314719
This patch removes lot of static Instances arrays from different input file
classes and introduces global arrays for access instead. Similar to arrays we
have for InputSections/OutputSectionCommands.
It allows to iterate over input files in a non-templated code.
Differential revision: https://reviews.llvm.org/D35987
llvm-svn: 313619
Reviewing another change I noticed that we use "getSymbols" to mean
different things in different files. Depending on the file it can
return
ArrayRef<StringRef>
ArrayRef<SymbolBody*>
ArrayRef<Symbol*>
ArrayRef<Elf_Sym>
With this change it always returns an ArrayRef<SymbolBody*>. The other
functions are renamed getELFsyms() and getSymbolNames().
Note that we cannot return ArrayRef<Symbol*> instead of
ArreyRef<SymbolBody*> because local symbols have a SymbolBody but not
a Symbol.
llvm-svn: 309840
With that in place we can use lld's own infrastructure for the low
level detail of dwarf parsing.
With this we don't decompress sections twice, we don't scan all
realocations and even with this simplistic implementation linking
clang with gdb index goes from 34.09 seconds to 20.80 seconds.
llvm-svn: 308544
The --exclude-libs option is not a popular option, but at least some
programs in Android depend on it, so it's worth to support it.
Differential Revision: https://reviews.llvm.org/D34422
llvm-svn: 305920
The ELF standard defines that the SHT_GROUP section as follows:
- its sh_link has the symbol index, and
- the symbol name is used to uniquify section groups.
Object files created by GNU gold does not seem to comply with the
standard. They have this additional rule:
- if the symbol has no name and a STT_SECTION symbol, a section
name is used instead of a symbol name.
If we don't do anything for this, the linker fails with a mysterious
error message if input files are generated by gas. It is unfortunate
but I think we need to support it.
Differential Revision: https://reviews.llvm.org/D34064
llvm-svn: 305218