folding to not constant folding.
Constant folding of ICEs is done as a GCC compatibility measure, but new
code was picking it up, presumably by accident, due to the bad default.
While here, also switch the flag from a bool to an enum to make it more
obvious what it means at call sites. This highlighted a couple of places
where our behavior is different between C++11 and C++14 due to switching
from checking for an ICE to checking for a converted constant
expression (where there is no 'fold' codepath).
This patch adds -f[no-]split-cold-code CC1 options to clang. This allows
the splitting pass to be toggled on/off. The current method of passing
`-mllvm -hot-cold-split=true` to clang isn't ideal as it may not compose
correctly (say, with `-O0` or `-Oz`).
To implement the -fsplit-cold-code option, an attribute is applied to
functions to indicate that they may be considered for splitting. This
removes some complexity from the old/new PM pipeline builders, and
behaves as expected when LTO is enabled.
Co-authored by: Saleem Abdulrasool <compnerd@compnerd.org>
Differential Revision: https://reviews.llvm.org/D57265
Reviewed By: Aditya Kumar, Vedant Kumar
Reviewers: Teresa Johnson, Aditya Kumar, Fedor Sergeev, Philip Pfaffe, Vedant Kumar
This reverts commits 683b308c07 and
8487bfd4e9.
We will go for a more restricted approach that does not give freedom to
everyone to change ABIs on whichever platform.
See the discussion on https://reviews.llvm.org/D85802.
Prototype the newly proposed load_lane instructions, as specified in
https://github.com/WebAssembly/simd/pull/350. Since these instructions are not
available to origin trial users on Chrome stable, make them opt-in by only
selecting them from intrinsics rather than normal ISel patterns. Since we only
need rough prototypes to measure performance right now, this commit does not
implement all the load and store patterns that would be necessary to make full
use of the offset immediate. However, the full suite of offset tests is included
to make it easy to track improvements in the future.
Since these are the first instructions to have a memarg immediate as well as an
additional immediate, the disassembler needed some additional hacks to be able
to parse them correctly. Making that code more principled is left as future
work.
Differential Revision: https://reviews.llvm.org/D89366
Capitalize the profile function of APValue such that it can be used by FoldingSetNodeID
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D88643
Update clang/lib/Basic to stop relying on a `MemoryBuffer*`, using the
`MemoryBufferRef` from `getBufferOrNone` or `getBufferOrFake` instead of
`getBuffer`.
Differential Revision: https://reviews.llvm.org/D89394
AlignedCharArrayUnion is really only needed to handle the "union" case
when we need memory of suitable size and alignment for multiple types.
SmallVector only needs storage for one type, so use that directly.
Remove `ContentCache::getBuffer`, which always returned a
dereferenceable `MemoryBuffer*` and had a `bool*Invalid` out parameter,
and replace it with:
- `ContentCache::getBufferOrNone`, which returns
`Optional<MemoryBufferRef>`. This is the new API that consumers should
use. Later it could be renamed to `getBuffer`, but intentionally using
a different name to root out any unexpected callers.
- `ContentCache::getBufferPointer`, which returns `MemoryBuffer*` with
"optional" semantics. This is `private` to avoid growing callers and
`SourceManager` has temporarily been made a `friend` to access it.
Later paches will update the transitive callers to not need a raw
pointer, and eventually this will be deleted.
No functionality change intended here.
Differential Revision: https://reviews.llvm.org/D89348
This implements the flag proposed in RFC http://lists.llvm.org/pipermail/cfe-dev/2020-August/066437.html.
The goal is to add a way to override the default target C++ ABI through
a compiler flag. This makes it easier to test and transition between different
C++ ABIs through compile flags rather than build flags.
In this patch:
- Store `-fc++-abi=` in a LangOpt. This isn't stored in a
CodeGenOpt because there are instances outside of codegen where Clang
needs to know what the ABI is (particularly through
ASTContext::createCXXABI), and we should be able to override the
target default if the flag is provided at that point.
- Expose the existing ABIs in TargetCXXABI as values that can be passed
through this flag.
- Create a .def file for these ABIs to make it easier to check flag
values.
- Add an error for diagnosing bad ABI flag values.
Differential Revision: https://reviews.llvm.org/D85802
clang --target arm-none-eabi --print-libgcc-file-name --rtlib=compiler-rt
used to print `/path/to/lib/clang/version/lib/libclang_rt.builtins-arm.a`
but should print `/path/to/lib/clang/version/lib/baremetal/libclang_rt.builtins-arm.a`.
Similarly, --target armv7m-none-eabi should print libclang_rt.builtins-armv7m.a
This matches the compiler-rt file name used at link time in the
baremetal driver.
Reviewed By: manojgupta
Differential Revision: https://reviews.llvm.org/D89327
Instead of collecting all specializations and doing a post-filterin, we
can just get all targeted specializations from getPartialSpecializationsizations.
Differential Revision: https://reviews.llvm.org/D89220
With this change, we're more or less ready to allow users outside
of the Static Analyzer to take advantage of path diagnostic consumers
for emitting their warnings in different formats.
Differential Revision: https://reviews.llvm.org/D67422
IssueHash is an attempt to introduce stable warning identifiers
that won't change when code around them gets moved around.
Path diagnostic consumers print issue hashes for the emitted diagnostics.
This move will allow us to ultimately move path diagnostic consumers
to libAnalysis.
Differential Revision: https://reviews.llvm.org/D67421
The AnalyzerOptions object contains too much information that's
entirely specific to the Analyzer. It is also being referenced by
path diagnostic consumers to tweak their behavior. In order for path
diagnostic consumers to function separately from the analyzer,
make a smaller options object that only contains relevant options.
Differential Revision: https://reviews.llvm.org/D67420
Followup to D85191.
This changes getTypeInfoInChars to return a TypeInfoChars
struct instead of a std::pair of CharUnits. This lets the
interface match getTypeInfo more closely.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D86447
This patch resumes the work of D16586.
According to the AAPCS, volatile bit-fields should
be accessed using containers of the widht of their
declarative type. In such case:
```
struct S1 {
short a : 1;
}
```
should be accessed using load and stores of the width
(sizeof(short)), where now the compiler does only load
the minimum required width (char in this case).
However, as discussed in D16586,
that could overwrite non-volatile bit-fields, which
conflicted with C and C++ object models by creating
data race conditions that are not part of the bit-field,
e.g.
```
struct S2 {
short a;
int b : 16;
}
```
Accessing `S2.b` would also access `S2.a`.
The AAPCS Release 2020Q2
(https://documentation-service.arm.com/static/5efb7fbedbdee951c1ccf186?token=)
section 8.1 Data Types, page 36, "Volatile bit-fields -
preserving number and width of container accesses" has been
updated to avoid conflict with the C++ Memory Model.
Now it reads in the note:
```
This ABI does not place any restrictions on the access widths of bit-fields where the container
overlaps with a non-bit-field member or where the container overlaps with any zero length bit-field
placed between two other bit-fields. This is because the C/C++ memory model defines these as being
separate memory locations, which can be accessed by two threads simultaneously. For this reason,
compilers must be permitted to use a narrower memory access width (including splitting the access into
multiple instructions) to avoid writing to a different memory location. For example, in
struct S { int a:24; char b; }; a write to a must not also write to the location occupied by b, this requires at least two
memory accesses in all current Arm architectures. In the same way, in struct S { int a:24; int:0; int b:8; };,
writes to a or b must not overwrite each other.
```
I've updated the patch D16586 to follow such behavior by verifying that we
only change volatile bit-field access when:
- it won't overlap with any other non-bit-field member
- we only access memory inside the bounds of the record
- avoid overlapping zero-length bit-fields.
Regarding the number of memory accesses, that should be preserved, that will
be implemented by D67399.
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D72932
Emit the equivalent integer reduction intrinsics in IR instead of expanding to shuffle+arithmetic sequences.
The fadd/fmul reductions might be trickier as they assume a similar bisection reduction while the generic intrinsics assume a sequential reduction (intel docs are ambiguous on the correct approach) - I'm not sure if we want to always tag them with reassoc? Anyway, that issue can wait until a separate fp patch along with the fmin/fmax reductions.
Differential Revision: https://reviews.llvm.org/D87604
References to different declarations of the same entity aren't different
values, so shouldn't have different representations.
Recommit of e6393ee813, most recently
reverted in 9a33f027ac due to a bug caused
by ObjCInterfaceDecls not propagating availability attributes along
their redeclaration chains; that bug was fixed in
e2d4174e9c.
They can get stale at use time because of updates from other recursive
specializations. Instead, rely on the existence of previous declarations to add
the specialization.
Differential Revision: https://reviews.llvm.org/D87853
This is a prep patch for changing SourceManager to return
`Optional<MemoryBufferRef>` instead of `MemoryBuffer`. With that change the
address of the MemoryBuffer will be gone, so instead use the start of the
buffer as the key for this map.
No functionality change intended, as it's expected that the pointer identity
matches between the buffers and the buffer data.
Radar-Id: rdar://70139990
Differential Revision: https://reviews.llvm.org/D89136
At AMD, in an internal audit of our code, we found some corner cases
where we were not quite differentiating targets enough for some old
hardware. This commit is part of fixing that by adding three new
targets:
* The "Oland" and "Hainan" variants of gfx601 are now split out into
gfx602. LLPC (in the GPUOpen driver) and other front-ends could use
that to avoid using the shaderZExport workaround on gfx602.
* One variant of gfx703 is now split out into gfx705. LLPC and other
front-ends could use that to avoid using the
shaderSpiCsRegAllocFragmentation workaround on gfx705.
* The "TongaPro" variant of gfx802 is now split out into gfx805.
TongaPro has a faster 64-bit shift than its former friends in gfx802,
and a subtarget feature could be set up for that to take advantage of
it. This commit does not make that change; it just adds the target.
V2: Add clang changes. Put TargetParser list in order.
V3: AMDGCNGPUs table in TargetParser.cpp needs to be in GPUKind order,
so fix the GPUKind order.
Differential Revision: https://reviews.llvm.org/D88916
Change-Id: Ia901a7157eb2f73ccd9f25dbacec38427312377d
Extended -cl-std/std flag with CL3.0 and added predefined version macros.
Patch by Anton Zabaznov (azabaznov)!
Tags: #clang
Differential Revision: https://reviews.llvm.org/D88300
Previously, when clang was compiled with -DLLVM_ENABLE_ASSERTIONS=ON, the added tests were displaying:
inlinable function call in a function with debug info must have a !dbg location
call void @"??1?$c@UB@@@@QEAA@XZ"(%struct.c* @"?f@?1??d@@YAPEAU?$c@UB@@@@XZ@4U2@A")
fatal error: error in backend: Broken module found, compilation aborted!
Stack dump:
0. Program arguments: <f:\svn\buildninja\bin\clang -cc1 -emit-llvm debug-info-no-location.cpp> -gcodeview -debug-info-kind=limited
1. <eof> parser at end of file
2. Per-function optimization
Fixes PR43012
Differential Revision: https://reviews.llvm.org/D66328
types.
Previously, a type-dependent cast to a deduced class template
specialization type would end up with a non-dependent class template
specialization type, leading to confusion downstream.
SUMMARY:
In IBM compiler xlclang , there is an option -fnovisibility which suppresses visibility. For more details see: https://www.ibm.com/support/knowledgecenter/SSGH3R_16.1.0/com.ibm.xlcpp161.aix.doc/compiler_ref/opt_visibility.html.
We need to add the option -mignore-xcoff-visibility for compatibility with the IBM AIX OS (as the option is enabled by default in AIX). With this option llvm does not emit any visibility attribute to ASM or XCOFF object file.
The option only work on the AIX OS, for other non-AIX OS using the option will report an unsupported options error.
In AIX OS:
1.1 the option -mignore-xcoff-visibility is enabled by default , if there is not -fvisibility=* and -mignore-xcoff-visibility explicitly in the clang command .
1.2 if there is -fvisibility=* explicitly but not -mignore-xcoff-visibility explicitly in the clang command. it will generate visibility attributes.
1.3 if there are both -fvisibility=* and -mignore-xcoff-visibility explicitly in the clang command. The option "-mignore-xcoff-visibility" wins , it do not emit the visibility attribute.
The option -mignore-xcoff-visibility has no effect on visibility attribute when compile with -emit-llvm option to generated LLVM IR.
Reviewer: daltenty,Jason Liu
Differential Revision: https://reviews.llvm.org/D87451
Summary:
This patch adds an error to Clang that detects if OpenMP offloading is used
between two architectures with incompatible pointer sizes. This ensures that
the data mapping can be done correctly and solves an issue in code generation
generating the wrong size pointer.
Reviewer: jdoerfert
Subscribers: cfe-commits delcypher guansong llvm-commits sstefan1 yaxunl
Tags: #OpenMP #Clang
Differential Revision: https://reviews.llvm.org/D88594
Object of class `Command` contains various properties of a command to
execute, but output file was missed from them. This change adds this
property. It is required for reporting consumed time and memory implemented
in D78903 and may be used in other cases too.
Differential Revision: https://reviews.llvm.org/D78902
A lot of our code building with clang-cl.exe using Clang 11 was failing with
the following 2 type of errors:
1. explicit specialization of 'foo' after instantiation
2. no matching function for call to 'bar'
Note that we also use -fdelayed-template-parsing in our builds.
I tried pretty hard to get a small repro for these failures, but couldn't. So
there is some subtle edge case in the -fpch-instantiate-templates feature
introduced by this change: https://reviews.llvm.org/D69585
When I tried turning this off using -fno-pch-instantiate-templates, builds
would silently fail with the same error without any indication that
-fno-pch-instantiate-templates was being ignored by the compiler. Then I
realized this "no" option wasn't actually working when I ran Clang under a
debugger.
Differential revision: https://reviews.llvm.org/D88680
Currently Flang uses TextDiagnostic, TextDiagnosticPrinter &
TestDiagnosticBuffer classes from Clang (more specifically, from
libclangFrontend). This patch introduces simplified equivalents of these
classes in Flang (i.e. it removes the dependency on libclangFrontend).
Flang only needs these diagnostics classes for the compiler driver
diagnostics. This is unlike in Clang in which similar diagnostic classes
are used for e.g. Lexing/Parsing/Sema diagnostics. For this reason, the
implementations introduced here are relatively basic. We can extend them
in the future if this is required.
This patch also enhances how the diagnostics are printed. In particular,
this is the diagnostic that you'd get _before_ the changes introduced here
(no text formatting):
```
$ bin/flang-new
error: no input files
```
This is the diagnostic that you get _after_ the changes introduced here
(in terminals that support it, the text is formatted - bold + red):
```
$ bin/flang-new
flang-new: error: no input files
```
Tests are updated accordingly and options related to enabling/disabling
color diagnostics are flagged as supported by Flang.
Reviewed By: sameeranjoshi, CarolineConcatto
Differential Revision: https://reviews.llvm.org/D87774
Summary:
This patch adds an error to Clang that detects if OpenMP offloading is
used between two architectures with incompatible pointer sizes. This
ensures that the data mapping can be done correctly and solves an issue
in code generation generating the wrong size pointer. This patch adds a
new lit substitution, %omp_powerpc_triple that, if the system is 32-bit or
64-bit, sets the powerpc triple accordingly. This was required to fix
some OpenMP tests that automatically populated the target architecture.
Reviewers: jdoerfert
Subscribers: cfe-commits guansong sstefan1 yaxunl delcypher
Tags: OpenMP clang LLVM
Differential Revision: https://reviews.llvm.org/D88594
Add an option --gpu-instrument-lib= to allow users to specify
an instrument device library. This is for supporting -finstrument
in device code for debugging/profiling tools.
Differential Revision: https://reviews.llvm.org/D88557
We were taking multiple pointer arguments in the builtin.
gcc accepts a single void*.
The cast from void* to _m128i* caused the IR generation to assume
the pointer was aligned.
Instead make the builtin take a single void*, emit i8* GEPs to
adjust then cast to <2 x i64>* and perform a store with align of 1.
Summary: This patch implements the builtins for xvtdivdp, xvtdivsp, xvtsqrtdp, xvtsqrtsp.
The instructions correspond to the following builtins:
int vec_test_swdiv(vector double v1, vector double v2);
int vec_test_swdivs(vector float v1, vector float v2);
int vec_test_swsqrt(vector double v1);
int vec_test_swsqrts(vector float v1);
This patch depends on D88274, which fixes the bug in copying from CRRC to GPRC/G8RC.
Reviewed By: steven.zhang, amyk
Differential Revision: https://reviews.llvm.org/D88278
The function `TryListConversion` didn't properly validate the following
part of the standard:
Otherwise, if the parameter type is a character array [... ]
and the initializer list has a single element that is an
appropriately-typed string literal (8.5.2 [dcl.init.string]), the
implicit conversion sequence is the identity conversion.
This caused the following call to `f()` to be ambiguous.
void f(int(&&)[1]);
void f(unsigned(&&)[1]);
void g(unsigned i) {
f({i});
}
This issue only occurs when the initializer list had one element.
Differential Revision: https://reviews.llvm.org/D87561
This helper method is useful even outside of Gnu toolchains, so move
it to ToolChain so it can be reused in other toolchains such as Fuchsia.
Differential Revision: https://reviews.llvm.org/D88452
Currently CUDA/HIP toolchain uses "unknown" as bound arch
for offload action for fat binary. This causes -mcpu or -march
with "unknown" added in HIPToolChain::TranslateArgs or
CUDAToolChain::TranslateArgs.
This causes issue for https://reviews.llvm.org/D88377 since
HIP toolchain needs to check -mcpu in HIPToolChain::TranslateArgs.
The bound arch of offload action for fat binary is not really
used, therefore set it to CudaArch::UNUSED.
Differential Revision: https://reviews.llvm.org/D88524
We now recognize this function as a builtin despite it having an
unexpected number of parameters; make sure we don't enforce that it has
only 1 argument for its 2 parameters.
Summary:
Motivated by the new objc_direct attribute, this change adds a new
attribute that remotes metadata from Protocols that the programmer knows
isn't going to be used at runtime. We simply have the frontend skip
generating any protocol metadata entries (e.g. OBJC_CLASS_NAME,
_OBJC_$_PROTOCOL_INSTANCE_METHDOS, _OBJC_PROTOCOL, etc) for a protocol
marked with `__attribute__((objc_non_runtime_protocol))`.
There are a few APIs used to retrieve a protocol at runtime.
`@protocol(SomeProtocol)` will now error out of the requested protocol
is marked with attribute. `objc_getProtocol` will return `NULL` which
is consistent with the behavior of a non-existing protocol.
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75574
This helper method is useful even outside of Gnu toolchains, so move
it to ToolChain so it can be reused in other toolchains such as Fuchsia.
Differential Revision: https://reviews.llvm.org/D88452
After this change all nodes that have a delimited-list are using the
`List` API.
Implementation details:
Let's look at a declaration with multiple declarators:
`int a, b;`
To generate a declarator list node we need to have the range of
declarators: `a, b`:
However, the `ClangAST` actually stores them as separate declarations:
`int a ;`
`int b;`
We solve that by appropriately marking the declarators on each separate
declaration in the `ClangAST` and then for the final declarator `int
b`, shrinking its range to fit to the already marked declarators.
Differential Revision: https://reviews.llvm.org/D88403
Failing tests on Arm due to the tests automatically populating
incomatible pointer width architectures. Reverting until the tests are
updated. Failing tests:
OpenMP/distribute_parallel_for_num_threads_codegen.cpp
OpenMP/distribute_parallel_for_if_codegen.cpp
OpenMP/distribute_parallel_for_simd_if_codegen.cpp
OpenMP/distribute_parallel_for_simd_num_threads_codegen.cpp
OpenMP/target_teams_distribute_parallel_for_if_codegen.cpp
OpenMP/target_teams_distribute_parallel_for_simd_if_codegen.cpp
OpenMP/teams_distribute_parallel_for_if_codegen.cpp
OpenMP/teams_distribute_parallel_for_simd_if_codegen.cpp
This reverts commit 9d2378b591.
Summary:
This patch adds an error to Clang that detects if OpenMP offloading is used
between two architectures with incompatible pointer sizes. This ensures that
the data mapping can be done correctly and solves an issue in code generation
generating the wrong size pointer.
Reviewer: jdoerfert
Subscribers:
Tags: #OpenMP #Clang
Differential Revision:
On some targets, preferred alignment is larger than ABI alignment in some cases. For example,
on AIX we have special power alignment rules which would cause that. Previously, to support
those cases, we added a “PreferredAlignment” field in the `RecordLayout` to store the AIX
special alignment values in “PreferredAlignment” as the community suggested.
However, that patch alone is not enough. There are places in the Clang where `PreferredAlignment`
should have been used instead of ABI-specified alignment. This patch is aimed at fixing those
spots.
Differential Revision: https://reviews.llvm.org/D86790
Key Locker provides a mechanism to encrypt and decrypt data with an AES key without having access
to the raw key value by converting AES keys into “handles”. These handles can be used to perform the
same encryption and decryption operations as the original AES keys, but they only work on the current
system and only until they are revoked. If software revokes Key Locker handles (e.g., on a reboot),
then any previous handles can no longer be used.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D88398
- Fix a memory leak accidentally introduced yesterday by using CodeGen's
existing mangling context instead of creating a new context afresh.
- Move GNU-runtime ObjC method mangling into the AST mangler; this will
eventually be necessary to support direct methods there, but is also
just the right architecture.
- Make the Apple-runtime method mangling work properly when given an
interface declaration, fixing a bug (which had solidified into a test)
where mangling a category method from the interface could cause it to
be mangled as if the category name was a class name. (Category names
are namespaced within their class and have no global meaning.)
- Fix a code cross-reference in dsymutil.
Based on a patch by Ellis Hoag.
This happens in glibc's headers. It's important that we recognize these
functions so that we can mark them as returns_twice.
Differential Revision: https://reviews.llvm.org/D88518
The current C++ grammar allows an anonymous bit-field with an attribute,
but this is ambiguous (the attribute in that case could appertain to the
type instead of the bit-field). The current thinking in the Core Working
Group is that it's better to disallow attributes in that position at the
grammar level so that the ambiguity resolves in favor of applying to the
type.
During discussions about the behavior of the attribute, the Core Working
Group also felt it was better to disallow anonymous bit-fields from
specifying a default member initializer.
This implements both sets of related grammar changes.
This changes some diagnostics to use terminology from the standard
rather than invented terminology, which improves consistency with other
diagnostics as well. There are no functional changes intended other
than wording and naming.
GCC 7 introduced -fprofile-update={atomic,prefer-atomic} (prefer-atomic is for
best efforts (some targets do not support atomics)) to increment counters
atomically, which is exactly what we have done with -fprofile-instr-generate
(D50867) and -fprofile-arcs (b5ef137c11).
This patch adds the option to clang to surface the internal options at driver level.
GCC 7 also turned on -fprofile-update=prefer-atomic when -pthread is specified,
but it has performance regression
(https://gcc.gnu.org/bugzilla/show_bug.cgi?id=89307). So we don't follow suit.
Differential Revision: https://reviews.llvm.org/D87737
Check applied to unbounded (incomplete) arrays and pointers to spot
cases where the computed address is beyond the largest possible
addressable extent of the array, based on the address space in which the
array is delcared, or which the pointer refers to.
Check helps to avoid cases of nonsense pointer math and array indexing
which could lead to linker failures or runtime exceptions. Of
particular interest when building for embedded systems with small
address spaces.
This is version 2 of this patch -- version 1 had some testing issues
due to a sign error in existing code. That error is corrected and
lit test for this chagne is extended to verify the fix.
Originally reviewed/accepted by: aaron.ballman
Original revision: https://reviews.llvm.org/D86796
Reviewed By: ebevhan
Differential Revision: https://reviews.llvm.org/D88174
References to different declarations of the same entity aren't different
values, so shouldn't have different representations.
Recommit of e6393ee813 with fixed handling
for weak declarations. We now look for attributes on the most recent
declaration when determining whether a declaration is weak. (Second
recommit with further fixes for mishandling of weak declarations. Our
behavior here is fundamentally unsound -- see PR47663 -- but this
approach attempts to not make things worse.)
The change implements evaluation of constant floating point expressions
under non-default rounding modes. The main objective was to support
evaluation of global variable initializers, where constant rounding mode
may be specified by `#pragma STDC FENV_ROUND`.
Differential Revision: https://reviews.llvm.org/D87822
This attribute allows declarations to be restricted to the framework
itself, enabling Swift to remove the declarations when importing
libraries. This is useful in the case that the functions can be
implemented in a more natural way for Swift.
This is based on the work of the original changes in
8afaf3aad2
Differential Revision: https://reviews.llvm.org/D87720
Reviewed By: Aaron Ballman
This code never actually did anything in the implementation.
`mergeDeclAttribute` is declared as `static`, and referenced exactly
once in the file: from `Sema::mergeDeclAttributes`.
`Sema::mergeDeclAttributes` sets `LocalAMK` to `AMK_None`. If the
attribute is `DeprecatedAttr`, `UnavailableAttr`, or `AvailabilityAttr`
then the `LocalAMK` is updated. However, because we are dealing with a
`SwiftNameDeclAttr` here, `LocalAMK` remains `AMK_None`. This is then
passed to the function which will as a result pass the value of
`AMK_None == AMK_Override` aka `false`. Simply propagate the value
through and erase the dead codepath.
Thanks to Aaron Ballman for flagging the use of the availability merge
kind here leading to this simplification!
Differential Revision: https://reviews.llvm.org/D88263
Reviewed By: Aaron Ballman
Add the ability to selectively instrument a subset of functions by dividing the functions into N logical groups and then selecting a group to cover. By selecting different groups over time you could cover the entire application incrementally with lower overhead than instrumenting the entire application at once.
Differential Revision: https://reviews.llvm.org/D87953
This reverts commit 8e780a1653.
DiagnosticBuilder is a value type, created on the stack everywhere. IMO
we should not be adding a vtable to it, and making very operator<< use a
virtual interface. There are other feasible designs for implementing
this. The original review, D84362, was approved by @tra, who is
responsible for Clang's CUDA support, but it wasn't reviewed by @rsmith
or anyone responsible for clang's diagnostic library.
Add the `swift_newtype` attribute which allows a type definition to be
imported into Swift as a new type. The imported type must be either an
enumerated type (enum) or an object type (struct).
This is based on the work of the original changes in
8afaf3aad2
Differential Revision: https://reviews.llvm.org/D87652
Reviewed By: Aaron Ballman
This patch implements custom codegen for the vec_replace_elt and
vec_replace_unaligned builtins.
These builtins map to the @llvm.ppc.altivec.vinsw and @llvm.ppc.altivec.vinsd
intrinsics depending on the arguments. The main motivation for doing custom
codegen for these intrinsics is because there are float and double versions of
the builtin. Normally, the converting the float to an integer would be done via
fptoui in the IR. This is incorrect as fptoui truncates the value and we must
ensure the value is not truncated. Therefore, we provide custom codegen to utilize
bitcast instead as bitcasts do not truncate.
Differential Revision: https://reviews.llvm.org/D83500
This recommits 829d14ee0a.
The patch was reverted due to a regression in some CUDA app
which was thought to be caused by this patch. However, investigation
showed that the regression was due to some other issues, therefore
recommit this patch.
This patch implements the vec_[all|any]_[eq | ne | lt | gt | le | ge] builtins for vector signed/unsigned __int128.
Differential Revision: https://reviews.llvm.org/D87910
This completes the circle, complementing -lto-embed-bitcode
(specifically, post-merge-pre-opt). Using -thinlto-assume-merged skips
function importing. The index file is still needed for the other data it
contains.
Differential Revision: https://reviews.llvm.org/D87949
This patch implements the vector string isolate (predicate and non-predicate
versions) builtins. The predicate builtins are custom selected within PPCISelDAGToDAG.
Differential Revision: https://reviews.llvm.org/D87671
This patch implements the 128-bit vector divide extended builtins in Clang/LLVM.
These builtins map to the vdivesq and vdiveuq instructions respectively.
Differential Revision: https://reviews.llvm.org/D87729
This introduces the new `swift_name` attribute that allows annotating
APIs with an alternate spelling for Swift. This is used as part of the
importing mechanism to allow interfaces to be imported with a new name
into Swift. It takes a parameter which is the Swift function name.
This parameter is validated to check if it matches the possible
transformed signature in Swift.
This is based on the work of the original changes in
8afaf3aad2
Differential Revision: https://reviews.llvm.org/D87534
Reviewed By: Aaron Ballman, Dmitri Gribenko
There can be Macros that are tagged with `modifiable`. Thus verifying
`canModifyAllDescendants` is not sufficient to avoid macros when deep
copying.
We think the `TokenBuffer` could inform us whether a `Token` comes from
a macro. We'll look into that when we can surface this information
easily, for instance in unit tests for `ComputeReplacements`.
Differential Revision: https://reviews.llvm.org/D88034
In case further such cases appear in the future we've got a generic function to add them to.
Additionally changed the ObjC special case to check the language and the identifier builtin ID instead of the name.
Addresses the cleanup suggestion from D87917.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D87983
template parameters.
No support for the new kinds of non-type template argument yet.
This is not entirely NFC for prior language modes: we have historically
incorrectly accepted rvalue references as the types of non-type template
parameters. Such invalid code is now rejected.
Currently newer clang-format options cannot be included in .clang-format files, if not all users can be forced to use an updated version.
This patch tries to solve this by adding an option to clang-format, enabling to ignore unknown (newer) options.
Differential Revision: https://reviews.llvm.org/D86137
This patch implements the vec_gen[b|h|w|d|q]m function prototypes in altivec.h
in order to utilize the move to VSR with mask instructions introduced in Power10.
Differential Revision: https://reviews.llvm.org/D82725
Some Java style guides and IDEs group Java static imports after
non-static imports. This patch allows clang-format to control
the location of static imports.
Patch by: @bc-lee
Reviewed By: MyDeveloperDay, JakeMerdichAMD
Differential Revision: https://reviews.llvm.org/D87201
Previously methods `FPOptions::get*` returned unsigned value even if the
corresponding property was represented by specific enumeration type. With
this change such methods return actual type of the property. It also
allows printing value of a property as text rather than integer code.
Differential Revision: https://reviews.llvm.org/D87812
This patch implements the vec_cntm function prototypes in altivec.h in order to
utilize the vector count mask bits instructions introduced in Power10.
Differential Revision: https://reviews.llvm.org/D82726
Instead of relying on whether a certain identifier is a builtin, introduce BuiltinAttr to specify a declaration as having builtin semantics.
This fixes incompatible redeclarations of builtins, as reverting the identifier as being builtin due to one incompatible redeclaration would have broken rest of the builtin calls.
Mostly-compatible redeclarations of builtins also no longer have builtin semantics. They don't call the builtin nor inherit their attributes.
A long-standing FIXME regarding builtins inside a namespace enclosed in extern "C" not being recognized is also addressed.
Due to the more correct handling attributes for builtin functions are added in more places, resulting in more useful warnings.
Tests are updated to reflect that.
Intrinsics without an inline definition in intrin.h had `inline` and `static` removed as they had no effect and caused them to no longer be recognized as builtins otherwise.
A pthread_create() related test is XFAIL-ed, as it relied on it being recognized as a builtin based on its name.
The builtin declaration syntax is too restrictive and doesn't allow custom structs, function pointers, etc.
It seems to be the only case and fixing this would require reworking the current builtin syntax, so this seems acceptable.
Fixes PR45410.
Reviewed By: rsmith, yutsumi
Differential Revision: https://reviews.llvm.org/D77491
Prior to this change `createTree` could not create arbitrary syntax
trees. Now it dispatches to the constructor of the concrete syntax tree
according to the `NodeKind` passed as argument. This allows reuse inside
the Synthesis API. # Please enter the commit message for your changes.
Lines starting
Differential Revision: https://reviews.llvm.org/D87820
In CUDA/HIP a function may become implicit host device function by
pragma or constexpr. A host device function is checked in both
host and device compilation. However it may be emitted only
on host or device side, therefore the diagnostics should be
deferred until it is known to be emitted.
Currently clang is only able to defer certain diagnostics. This causes
false alarms and limits the usefulness of host device functions.
This patch lets clang defer all overloading resolution diagnostics for host device functions.
An option -fgpu-defer-diag is added to control this behavior. By default
it is off.
It is NFC for other languages.
Differential Revision: https://reviews.llvm.org/D84364
References to different declarations of the same entity aren't different
values, so shouldn't have different representations.
Recommit of e6393ee813 with fixed
handling for weak declarations. We now look for attributes on the most
recent declaration when determining whether a declaration is weak.
Writing the .note.gnu.property manually is error prone and hard to
maintain in the assembly files.
The -mmark-bti-property is for the assembler to emit the section with the
GNU_PROPERTY_AARCH64_FEATURE_1_BTI. To be used when C/C++ is compiled
with -mbranch-protection=bti.
This patch refactors the .note.gnu.property handling.
Reviewed By: chill, nickdesaulniers
Differential Revision: https://reviews.llvm.org/D81930
Reland with test dependency on aarch64 target.
Writing the .note.gnu.property manually is error prone and hard to
maintain in the assembly files.
The -mmark-bti-property is for the assembler to emit the section with the
GNU_PROPERTY_AARCH64_FEATURE_1_BTI. To be used when C/C++ is compiled
with -mbranch-protection=bti.
This patch refactors the .note.gnu.property handling.
Reviewed By: chill, nickdesaulniers
Differential Revision: https://reviews.llvm.org/D81930
PartialDiagnostic misses some functions compared to DiagnosticBuilder.
This patch refactors DiagnosticBuilder and PartialDiagnostic, extracts
the common functionality so that the streaming << operators are
shared.
Differential Revision: https://reviews.llvm.org/D84362
Aligned allocation is not supported on z/OS. This patch sets -faligned-alloc-unavailable as default in z/OS toolchain.
Reviewed By: abhina.sreeskantharajan, hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D87611