This is an enhancement to LLVM Source-Based Code Coverage in clang to track how
many times individual branch-generating conditions are taken (evaluate to TRUE)
and not taken (evaluate to FALSE). Individual conditions may comprise larger
boolean expressions using boolean logical operators. This functionality is
very similar to what is supported by GCOV except that it is very closely
anchored to the ASTs.
Differential Revision: https://reviews.llvm.org/D84467
Emit a gap region beginning where the switch body begins. This sets line
execution counts in the areas between non-overlapping cases to 0.
This also removes some special handling of the first case in a switch:
these are now treated like any other case.
This does not resolve an outstanding issue with case statement regions
that do not end when a region is terminated. But it should address
llvm.org/PR44011.
Differential Revision: https://reviews.llvm.org/D70571
The area immediately after the closing right-paren of an if condition
should have a count equal to the 'then' block's count. Use a gap region
to set this count, so that region highlighting for the 'then' block
remains precise.
This solves a problem we have with wrapped segments. Consider:
1| if (false)
2| foo();
Without a gap area starting after the condition, the wrapped segment
from line 1 would make it look like line 2 is executed, when it's not.
rdar://35373009
llvm-svn: 317758
The current coverage implementation doesn't handle region termination
very precisely. Take for example an `if' statement with a `return':
void f() {
if (true) {
return; // The `if' body's region is terminated here.
}
// This line gets the same coverage as the `if' condition.
}
If the function `f' is called, the line containing the comment will be
marked as having executed once, which is not correct.
The solution here is to create a deferred region after terminating a
region. The deferred region is completed once the start location of the
next statement is known, and is then pushed onto the region stack.
In the cases where it's not possible to complete a deferred region, it
can safely be dropped.
Testing: lit test updates, a stage2 coverage-enabled build of clang
This is a reapplication but there are no changes from the original commit.
With D36813, the segment builder in llvm will be able to handle deferred
regions correctly.
llvm-svn: 312818
The code after a noreturn call doesn't execute.
The pattern in the testcase is pretty common in LLVM (a switch with
a default case that calls llvm_unreachable).
The original version of this patch was reverted in r309995 due to a
crash. This version includes a fix for that crash (testcase in
test/CoverageMapping/md.cpp).
Differential Revision: https://reviews.llvm.org/D36250
llvm-svn: 310406
This reverts commit r310010. I don't think there's anything wrong with
this commit, but it's causing clang to generate output that llvm-cov
doesn't do a good job with and the fix isn't immediately clear.
See Eli's comment in D36250 for more context.
I'm reverting the clang change so the coverage bot can revert back to
producing sensible output, and to give myself some time to investigate
what went wrong in llvm.
llvm-svn: 310154
The current coverage implementation doesn't handle region termination
very precisely. Take for example an `if' statement with a `return':
void f() {
if (true) {
return; // The `if' body's region is terminated here.
}
// This line gets the same coverage as the `if' condition.
}
If the function `f' is called, the line containing the comment will be
marked as having executed once, which is not correct.
The solution here is to create a deferred region after terminating a
region. The deferred region is completed once the start location of the
next statement is known, and is then pushed onto the region stack.
In the cases where it's not possible to complete a deferred region, it
can safely be dropped.
Testing: lit test updates, a stage2 coverage-enabled build of clang
llvm-svn: 310010
The code after a noreturn call doesn't execute.
The pattern in the testcase is pretty common in LLVM (a switch with
a default case that calls llvm_unreachable).
Differential Revision: https://reviews.llvm.org/D36250
llvm-svn: 309995
We never overwrite the end location of a region, so we would end up with
an overly large region when we reused the switch's region.
It's possible this code will be substantially rewritten in the near
future to deal with fallthrough more accurately, but this seems like
an improvement on its own for now.
Differential Revision: https://reviews.llvm.org/D34801
llvm-svn: 309901