There is no way to set broken sh_size field currently
for sections. It can be usefull for writing the
test cases.
Differential revision: https://reviews.llvm.org/D64401
llvm-svn: 365766
Some of our test cases are using objects which
has sections with a broken sh_offset field.
There was no way to set it from YAML until this patch.
Differential revision: https://reviews.llvm.org/D63879
llvm-svn: 364898
This allows setting different values for e_shentsize, e_shoff, e_shnum
and e_shstrndx fields and is useful for producing broken inputs for various
test cases.
Differential revision: https://reviews.llvm.org/D63771
llvm-svn: 364517
Summary:
The directive defines a symbol as an group/local memory (LDS) symbol.
LDS symbols behave similar to common symbols for the purposes of ELF,
using the processor-specific SHN_AMDGPU_LDS as section index.
It is the linker and/or runtime loader's job to "instantiate" LDS symbols
and resolve relocations that reference them.
It is not possible to initialize LDS memory (not even zero-initialize
as for .bss).
We want to be able to link together objects -- starting with relocatable
objects, but possible expanding to shared objects in the future -- that
access LDS memory in a flexible way.
LDS memory is in an address space that is entirely separate from the
address space that contains the program image (code and normal data),
so having program segments for it doesn't really make sense.
Furthermore, we want to be able to compile multiple kernels in a
compilation unit which have disjoint use of LDS memory. In that case,
we may want to place LDS symbols differently for different kernels
to save memory (LDS memory is very limited and physically private to
each kernel invocation), so we can't simply place LDS symbols in a
.lds section.
Hence this solution where LDS symbols always stay undefined.
Change-Id: I08cbc37a7c0c32f53f7b6123aa0afc91dbc1748f
Reviewers: arsenm, rampitec, t-tye, b-sumner, jsjodin
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, rupprecht, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61493
llvm-svn: 364296
With this patch we get ability to set any flags we want
for implicit sections defined in YAML.
Differential revision: https://reviews.llvm.org/D63136
llvm-svn: 363367
This is a follow-up for D62809.
Content and Size fields should be optional as was discussed in comments
of the D62809's thread. With that, we can describe a specific string table and
symbol table sections in a more correct way and also show appropriate errors.
The patch adds lots of test cases where the behavior is described in details.
Differential revision: https://reviews.llvm.org/D62957
llvm-svn: 362931
In glibc, DT_PPC_GOT indicates that PowerPC32 Secure PLT ABI is used.
I plan to use it in D62464.
DT_PPC_OPT currently indicates if a TLSDESC inspired TLS optimization is
enabled.
Reviewed By: grimar, jhenderson, rupprecht
Differential Revision: https://reviews.llvm.org/D62851
llvm-svn: 362569
ELF for the 64-bit Arm Architecture defines two processor-specific dynamic
tags:
DT_AARCH64_BTI_PLT 0x70000001, d_val
DT_AARCH64_PAC_PLT 0x70000003, d_val
These presence of these tags indicate that PLT sequences have been
protected using Branch Target Identification and Pointer Authentication
respectively. The presence of both indicates that the PLT sequences have
been protected with both Branch Target Identification and Pointer
Authentication.
This patch adds the tags and tests for llvm-readobj and yaml2obj.
As some of the processor specific dynamic tags overlap, this patch splits
them up, keeping their original default value if they were not previously
mentioned explicitly in a switch case.
Differential Revision: https://reviews.llvm.org/D62596
llvm-svn: 362493
CodeView has its own register map which is defined in cvconst.h. Missing this
mapping before saving register to CodeView causes debugger to show incorrect
value for all register based variables, like variables in register and local
variables addressed by register (stack pointer + offset).
This change added mapping between LLVM register and CodeView register so the
correct register number will be stored to CodeView/PDB, it aso fixed the
mapping from CodeView register number to register name based on current
CPUType but print PDB to yaml still assumes X86 CPU and needs to be fixed.
Differential Revision: https://reviews.llvm.org/D62608
llvm-svn: 362280
Summary:
This patch implement parsing symbol table for xcoffobjfile and
output as yaml format. Parsing auxiliary entries of a symbol
will be in a separate patch.
The XCOFF object file (aix_xcoff.o) used in the test comes from
-bash-4.2$ cat test.c
extern int i;
extern int TestforXcoff;
int main()
{
i++;
TestforXcoff--;
}
Patch by DiggerLin
Reviewers: sfertile, hubert.reinterpretcast, MaskRay, daltenty
Differential Revision: https://reviews.llvm.org/D61532
llvm-svn: 361832
This patch implements a limited form of autolinking primarily designed to allow
either the --dependent-library compiler option, or "comment lib" pragmas (
https://docs.microsoft.com/en-us/cpp/preprocessor/comment-c-cpp?view=vs-2017) in
C/C++ e.g. #pragma comment(lib, "foo"), to cause an ELF linker to automatically
add the specified library to the link when processing the input file generated
by the compiler.
Currently this extension is unique to LLVM and LLD. However, care has been taken
to design this feature so that it could be supported by other ELF linkers.
The design goals were to provide:
- A simple linking model for developers to reason about.
- The ability to to override autolinking from the linker command line.
- Source code compatibility, where possible, with "comment lib" pragmas in other
environments (MSVC in particular).
Dependent library support is implemented differently for ELF platforms than on
the other platforms. Primarily this difference is that on ELF we pass the
dependent library specifiers directly to the linker without manipulating them.
This is in contrast to other platforms where they are mapped to a specific
linker option by the compiler. This difference is a result of the greater
variety of ELF linkers and the fact that ELF linkers tend to handle libraries in
a more complicated fashion than on other platforms. This forces us to defer
handling the specifiers to the linker.
In order to achieve a level of source code compatibility with other platforms
we have restricted this feature to work with libraries that meet the following
"reasonable" requirements:
1. There are no competing defined symbols in a given set of libraries, or
if they exist, the program owner doesn't care which is linked to their
program.
2. There may be circular dependencies between libraries.
The binary representation is a mergeable string section (SHF_MERGE,
SHF_STRINGS), called .deplibs, with custom type SHT_LLVM_DEPENDENT_LIBRARIES
(0x6fff4c04). The compiler forms this section by concatenating the arguments of
the "comment lib" pragmas and --dependent-library options in the order they are
encountered. Partial (-r, -Ur) links are handled by concatenating .deplibs
sections with the normal mergeable string section rules. As an example, #pragma
comment(lib, "foo") would result in:
.section ".deplibs","MS",@llvm_dependent_libraries,1
.asciz "foo"
For LTO, equivalent information to the contents of a the .deplibs section can be
retrieved by the LLD for bitcode input files.
LLD processes the dependent library specifiers in the following way:
1. Dependent libraries which are found from the specifiers in .deplibs sections
of relocatable object files are added when the linker decides to include that
file (which could itself be in a library) in the link. Dependent libraries
behave as if they were appended to the command line after all other options. As
a consequence the set of dependent libraries are searched last to resolve
symbols.
2. It is an error if a file cannot be found for a given specifier.
3. Any command line options in effect at the end of the command line parsing apply
to the dependent libraries, e.g. --whole-archive.
4. The linker tries to add a library or relocatable object file from each of the
strings in a .deplibs section by; first, handling the string as if it was
specified on the command line; second, by looking for the string in each of the
library search paths in turn; third, by looking for a lib<string>.a or
lib<string>.so (depending on the current mode of the linker) in each of the
library search paths.
5. A new command line option --no-dependent-libraries tells LLD to ignore the
dependent libraries.
Rationale for the above points:
1. Adding the dependent libraries last makes the process simple to understand
from a developers perspective. All linkers are able to implement this scheme.
2. Error-ing for libraries that are not found seems like better behavior than
failing the link during symbol resolution.
3. It seems useful for the user to be able to apply command line options which
will affect all of the dependent libraries. There is a potential problem of
surprise for developers, who might not realize that these options would apply
to these "invisible" input files; however, despite the potential for surprise,
this is easy for developers to reason about and gives developers the control
that they may require.
4. This algorithm takes into account all of the different ways that ELF linkers
find input files. The different search methods are tried by the linker in most
obvious to least obvious order.
5. I considered adding finer grained control over which dependent libraries were
ignored (e.g. MSVC has /nodefaultlib:<library>); however, I concluded that this
is not necessary: if finer control is required developers can fall back to using
the command line directly.
RFC thread: http://lists.llvm.org/pipermail/llvm-dev/2019-March/131004.html.
Differential Revision: https://reviews.llvm.org/D60274
llvm-svn: 360984
Summary:
the stream format is exactly the same as for ThreadList and ModuleList
streams, only the entry types are slightly different, so the changes in
this patch are just straight-forward applications of established
patterns.
Reviewers: amccarth, jhenderson, clayborg
Subscribers: markmentovai, lldb-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61885
llvm-svn: 360908
Summary:
The implementation is a pretty straightforward extension of the pattern
used for (de)serializing the ModuleList stream. Since there are other
streams which use the same format (MemoryList and MemoryList64, at
least). I tried to generalize the code a bit so that adding future
streams of this type can be done with less code.
Reviewers: amccarth, jhenderson, clayborg
Subscribers: markmentovai, lldb-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61423
llvm-svn: 360350
In some cases it is useful to explicitly set symbol's st_name value.
For example, I am using it in a patch for LLD to remove the broken
binary from a test case and replace it with a YAML test.
Differential revision: https://reviews.llvm.org/D61180
llvm-svn: 360137
The only known user of this relocation type and symbol type is
the debug info sections, but we were not testing the `--relocatable`
output path.
This change adds a minimal test case to cover relocations against
section symbols includes `--relocatable` output.
Differential Revision: https://reviews.llvm.org/D61623
llvm-svn: 360110
yaml2obj might crash on invalid input when unable to parse the YAML.
Recently a crash with a very similar nature was fixed for an empty files.
This patch revisits the fix and does it in yaml::Input instead.
It seems to be more correct way to handle such situation.
With that crash for invalid inputs is also fixed now.
Differential revision: https://reviews.llvm.org/D61059
llvm-svn: 359178
Summary:
This patch adds support for yaml (de)serialization of the minidump
ModuleList stream. It's a fairly straight forward-application of the
existing patterns to the ModuleList structures defined in previous
patches.
One thing, which may be interesting to call out explicitly is the
addition of "new" allocation functions to the helper BlobAllocator
class. The reason for this was, that there was an emerging pattern of a
need to allocate space for entities, which do not have a suitable
lifetime for use with the existing allocation functions. A typical
example of that was the "size" of various lists, which is only available
as a temporary returned by the .size() method of some container. For
these cases, one can use the new set of allocation functions, which
will take a temporary object, and store it in an allocator-managed
buffer until it is written to disk.
Reviewers: amccarth, jhenderson, clayborg, zturner
Subscribers: lldb-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60405
llvm-svn: 358672
Summary:
This ensures that object files will continue to validate as
WebAssembly modules in the presence of bulk memory operations. Engines
that don't support bulk memory operations will not recognize the
DataCount section and will report validation errors, but that's ok
because object files aren't supposed to be run directly anyway.
Reviewers: aheejin, dschuff, sbc100
Subscribers: jgravelle-google, hiraditya, sunfish, rupprecht, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60623
llvm-svn: 358315
MSVC found the bare "make_unique" invocation ambiguous (between std::
and llvm:: versions). Explicitly qualifying the call with llvm:: should
hopefully fix it.
llvm-svn: 357750
Summary:
Strings in minidump files are stored as a 32-bit length field, giving
the length of the string in *bytes*, which is followed by the
appropriate number of UTF16 code units. The string is also supposed to
be null-terminated, and the null-terminator is not a part of the length
field. This patch:
- adds support for reading these strings out of the minidump file (this
implementation does not depend on proper null-termination)
- adds support for writing them to a minidump file
- using the previous two pieces implements proper (de)serialization of
the CSDVersion field of the SystemInfo stream. Previously, this was
only read/written as hex, and no attempt was made to access the
referenced string -- now this string is read and written correctly.
The changes are tested via yaml2obj|obj2yaml round-trip as well as a
unit test which checks the corner cases of the string deserialization
logic.
Reviewers: jhenderson, zturner, clayborg
Subscribers: llvm-commits, aprantl, markmentovai, amccarth, lldb-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59775
llvm-svn: 357749
Summary:
Now CVType and CVSymbol are effectively type-safe wrappers around
ArrayRef<uint8_t>. Make the kind() accessor load it from the
RecordPrefix, which is the same for types and symbols.
Reviewers: zturner, aganea
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60018
llvm-svn: 357658
Currently, YAML has the following syntax for describing the symbols:
Symbols:
Local:
LocalSymbol1:
...
LocalSymbol2:
...
...
Global:
GlobalSymbol1:
...
Weak:
...
GNUUnique:
I.e. symbols are grouped by their bindings. That is not very convenient,
because:
It does not allow to set a custom binding, what can be useful for producing
broken/special outputs for test cases. Adding a new binding would require to
change a syntax (what we observed when added GNUUnique recently).
It does not allow to change the order of the symbols in .symtab/.dynsym,
i.e. currently all Local symbols are placed first, then Global, Weak and GNUUnique
are following, but we are not able to change the order.
It is not consistent. Binding is just one of the properties of the symbol,
we do not group them by other properties.
It makes the code more complex that it can be. This patch shows it can be simplified
with the change performed.
The patch changes the syntax to just:
Symbols:
Symbol1:
...
Symbol2:
...
...
With that, we are able to work with the binding field just like with any other symbol property.
Differential revision: https://reviews.llvm.org/D60122
llvm-svn: 357595
Summary:
This patch adds the code needed to parse a minidump file into the
MinidumpYAML model, and the necessary glue code so that obj2yaml can
recognise the minidump files and process them.
Reviewers: jhenderson, zturner, clayborg
Subscribers: mgorny, lldb-commits, amccarth, markmentovai, aprantl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59634
llvm-svn: 357469
Summary:
This patch adds the ability to read a yaml form of a minidump file and
write it out as binary. Apart from the minidump header and the stream
directory, only three basic stream kinds are supported:
- Text: This kind is used for streams which contain textual data. This
is typically the contents of a /proc file on linux (e.g.
/proc/PID/maps). In this case, we just put the raw stream contents
into the yaml.
- SystemInfo: This stream contains various bits of information about the
host system in binary form. We expose the data in a structured form.
- Raw: This kind is used as a fallback when we don't have any special
knowledge about the stream. In this case, we just print the stream
contents in hex.
For this code to be really useful, more stream kinds will need to be
added (particularly for things like lists of memory regions and loaded
modules). However, these can be added incrementally.
Reviewers: jhenderson, zturner, clayborg, aprantl
Subscribers: mgorny, lemo, llvm-commits, lldb-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59482
llvm-svn: 356753
Summary:
Implements a new target features section in assembly and object files
that records what features are used, required, and disallowed in
WebAssembly objects. The linker uses this information to ensure that
all objects participating in a link are feature-compatible and records
the set of used features in the output binary for use by optimizers
and other tools later in the toolchain.
The "atomics" feature is always required or disallowed to prevent
linking code with stripped atomics into multithreaded binaries. Other
features are marked used if they are enabled globally or on any
function in a module.
Future CLs will add linker flags for ignoring feature compatibility
checks and for specifying the set of allowed features, implement using
the presence of the "atomics" feature to control the type of memory
and segments in the linked binary, and add front-end flags for
relaxing the linkage policy for atomics.
Reviewers: aheejin, sbc100, dschuff
Subscribers: jgravelle-google, hiraditya, sunfish, mgrang, jfb, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59173
llvm-svn: 356610
yaml2obj currently derives the p_filesz, p_memsz, and p_offset values of
program headers from their sections. This makes writing tests for
certain formats more complex, and sometimes impossible. This patch
allows setting these fields explicitly, overriding the default value,
when relevant.
Reviewed by: jakehehrlich, Higuoxing
Differential Revision: https://reviews.llvm.org/D59372
llvm-svn: 356247
I need this to remove a binary from LLD test suite.
The patch also simplifies the code a bit.
Differential revision: https://reviews.llvm.org/D59082
llvm-svn: 355591
This is for tweaking SHT_SYMTAB sections.
Their sh_info contains the (number of symbols + 1) usually.
But for creating invalid inputs for test cases it would be convenient
to allow explicitly override this field from YAML.
Differential revision: https://reviews.llvm.org/D58779
llvm-svn: 355193
This allows tools to parse/dump the architecture specific tags
like DT_MIPS_*, DT_PPC64_* and DT_HEXAGON_*
Also fixes a bug in DynamicTags.def which was revealed in this patch.
Differential revision: https://reviews.llvm.org/D58667
llvm-svn: 354876
Recently, support was added to yaml2obj to allow dynamic sections to
have a list of entries, to make it easier to write tests with dynamic
sections. However, this change also removed the ability to provide
custom contents to the dynamic section, making it hard to test
malformed contents (e.g. because the section is not a valid size to
contain an array of entries). This change reinstates this. An error is
emitted if raw content and dynamic entries are both specified.
Reviewed by: grimar, ruiu
Differential Review: https://reviews.llvm.org/D58543
llvm-svn: 354770
In order to test tool handling of invalid section indexes, I need to
create an object containing such an invalid section index. I could
create a hex-edited binary, but having the ability to use yaml2obj is
preferable. Prior to this change, yaml2obj would reject any explicit
section indexes less than SHN_LORESERVE. This patch changes it to allow
any value.
I had to change the test to use llvm-readelf instead of llvm-readobj,
because llvm-readobj does not like invalid section indexes. I've also
expanded the test to show that the most common SHN_* values are accepted
(SHN_UNDEF, SHN_ABS, SHN_COMMON).
Reviewed by: grimar, jakehehrlich
Differential Revision: https://reviews.llvm.org/D58445
llvm-svn: 354566
Summary:
Rename MemoryIndex to InitFlags and implement logic for determining
data segment layout in ObjectYAML and MC. Also adds a "passive" flag
for the .section assembler directive although this cannot be assembled
yet because the assembler does not support data sections.
Reviewers: sbc100, aardappel, aheejin, dschuff
Subscribers: jgravelle-google, hiraditya, sunfish, rupprecht, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57938
llvm-svn: 354397
yaml2obj/obj2yaml previously supported SHT_LOOS, SHT_HIOS, and
SHT_LOPROC for section types. These are simply values that delineate a
range and don't really make sense as valid values. For example if a
section has type value 0x70000000, obj2yaml shouldn't print this value
as SHT_LOPROC. Additionally, this was missing the three other range
markers (SHT_HIPROC, SHT_LOUSER and SHT_HIUSER).
This change removes these three range markers. It also adds support for
specifying the type as an integer, to allow section types that LLVM
doesn't know about.
Reviewed by: grimar
Differential Revision: https://reviews.llvm.org/D58383
llvm-svn: 354344
Fix:
Replace
assert(!IO.getContext() && "The IO context is initialized already");
with
assert(IO.getContext() && "The IO context is not initialized");
(this was introduced in r354329, where I tried to quickfix the darwin BB
and seems copypasted the assert from the wrong place).
Original commit message:
The section is described here:
https://refspecs.linuxfoundation.org/LSB_1.3.0/gLSB/gLSB/symverrqmts.html
Patch just teaches obj2yaml/yaml2obj to dump and parse such sections.
We did the finalization of string tables very late,
and I had to move the logic to make it a bit earlier.
That was needed in this patch since .gnu.version_r adds strings to .dynstr.
This might also be useful for implementing other special sections.
Everything else changed in this patch seems to be straightforward.
Differential revision: https://reviews.llvm.org/D58119
llvm-svn: 354335