Before:
movabsq $4294967296, %rax ## encoding: [0x48,0xb8,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00]
testq %rax, %rdi ## encoding: [0x48,0x85,0xf8]
jne LBB0_2 ## encoding: [0x75,A]
After:
btq $32, %rdi ## encoding: [0x48,0x0f,0xba,0xe7,0x20]
jb LBB0_2 ## encoding: [0x72,A]
btq is usually slower than testq because it doesn't fuse with the jump, but here we're better off
saving one register and a giant movabsq.
llvm-svn: 145103
When this field is true it means that the load is from constant (runt-time or compile-time) and so can be hoisted from loops or moved around other memory accesses
llvm-svn: 144100
On x86: (shl V, 1) -> add V,V
Hardware support for vector-shift is sparse and in many cases we scalarize the
result. Additionally, on sandybridge padd is faster than shl.
llvm-svn: 143311
fixes: Use a separate register, instead of SP, as the
calling-convention resource, to avoid spurious conflicts with
actual uses of SP. Also, fix unscheduling of calling sequences,
which can be triggered by pseudo-two-address dependencies.
llvm-svn: 143206
it fixes the dragonegg self-host (it looks like gcc is miscompiled).
Original commit messages:
Eliminate LegalizeOps' LegalizedNodes map and have it just call RAUW
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
Delete #if 0 code accidentally left in.
llvm-svn: 143188
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
llvm-svn: 143177
http://lab.llvm.org:8011/builders/llvm-x86_64-linux/builds/101
--- Reverse-merging r141854 into '.':
U test/MC/Disassembler/X86/x86-32.txt
U test/MC/Disassembler/X86/simple-tests.txt
D test/CodeGen/X86/bmi.ll
U lib/Target/X86/X86InstrInfo.td
U lib/Target/X86/X86ISelLowering.cpp
U lib/Target/X86/X86.td
U lib/Target/X86/X86Subtarget.h
llvm-svn: 141857
- x87: no min or max.
- SSE1: min/max for single precision scalars and vectors.
- SSE2: min/max for single and double precision scalars and vectors.
- AVX: as SSE2, but also supports the wider ymm vectors. (this is covered by the isTypeLegal check)
llvm-svn: 140296
dag-combine optimization to implement the ext-load efficiently (using shuffles).
For example the type <4 x i8> is stored in memory as i32, but it needs to
find its way into a <4 x i32> register. Previously we scalarized the memory
access, now we use shuffles.
llvm-svn: 139995
maxps and maxpd). This broke the sse41-blend.ll testcase by causing
maxpd to be produced rather than a cmp+blend pair, which is the reason
I tweaked it. Gives a small speedup on doduc with dragonegg when the
GCC vectorizer is used.
llvm-svn: 139986
take into consideration the presence of AVX. This change, together with
the SSEDomainFix enabled for AVX, makes AVX codegen to always (hopefully)
emit the same code as SSE for 128-bit vector ops. I don't
have a testcase for this, but AVX now beats SSE in performance for
128-bit ops in the majority of programas in the llvm testsuite
llvm-svn: 139817
However with this fix it does now.
Basically the operand order for the x86 target specific node
is not the same as the instruction, but since the intrinsic need that
specific order at the instruction definition, just change the order
during legalization. Also, there were some wrong invertions of condition
codes, such as GE => LE, GT => LT, fix that too. Fix PR10907.
llvm-svn: 139528
assert("not implemented for target shuffle node");
to:
assert(0 && "not implemented for target shuffle node");
This causes a test failure in CodeGen/X86/palignr.ll which has
been marked as XFAIL for the time being.
Test failure filed at PR10901.
llvm-svn: 139454
in Nadav's r139285 and r139287 commits.
1) Rename vsel.ll to a more descriptive name
2) Change the order of BLEND operands to "Op1, Op2, Cond", this is
necessary because PBLENDVB is already used in different places with
this order, and it was being emitted in the wrong way for vselect
3) Add AVX patterns and tests for the same SSE41 instructions
llvm-svn: 139305
with a vector condition); such selects become VSELECT codegen nodes.
This patch also removes VSETCC codegen nodes, unifying them with SETCC
nodes (codegen was actually often using SETCC for vector SETCC already).
This ensures that various DAG combiner optimizations kick in for vector
comparisons. Passes dragonegg bootstrap with no testsuite regressions
(nightly testsuite as well as "make check-all"). Patch mostly by
Nadav Rotem.
llvm-svn: 139159
init.trampoline and adjust.trampoline intrinsics, into two intrinsics
like in GCC. While having one combined intrinsic is tempting, it is
not natural because typically the trampoline initialization needs to
be done in one function, and the result of adjust trampoline is needed
in a different (nested) function. To get around this llvm-gcc hacks the
nested function lowering code to insert an additional parent variable
holding the adjust.trampoline result that can be accessed from the child
function. Dragonegg doesn't have the luxury of tweaking GCC code, so it
stored the result of adjust.trampoline in the memory GCC set aside for
the trampoline itself (this is always available in the child function),
and set up some new memory (using an alloca) to hold the trampoline.
Unfortunately this breaks Go which allocates trampoline memory on the
heap and wants to use it even after the parent has exited (!). Rather
than doing even more hacks to get Go working, it seemed best to just use
two intrinsics like in GCC. Patch mostly by Sanjoy Das.
llvm-svn: 139140
- Duplicate some store patterns to their AVX forms!
- Catched a bug while restricting the patterns subtarget, fix it
and update a testcase to check it properly
llvm-svn: 138851
code is inserted to first check if the current stacklet has enough
space. If so, space is allocated by simply decrementing the stack
pointer. Otherwise a runtime routine (__morestack_allocate_stack_space
in libgcc) is called which allocates the required memory from the
heap.
Patch by Sanjoy Das.
llvm-svn: 138818
from DYNAMIC_STACKALLOC.
Two new pseudo instructions (SEG_ALLOCA_32 and SEG_ALLOCA_64) which
will match X86SegAlloca (based on word size) are also added. They
will be custom emitted to inject the actual stack handling code.
Patch by Sanjoy Das.
llvm-svn: 138814
X86. Modify the pass added in the previous patch to call this new
code.
This new prologues generated will call a libgcc routine (__morestack)
to allocate more stack space from the heap when required
Patch by Sanjoy Das.
llvm-svn: 138812
explicit about which subtarget they refer to, and add AVX versions of
the ones we currently don't. Make the mask check more strict, to be
clear it won't be used to match to 256-bit versions!
llvm-svn: 138514
match splats in the form (splat (scalar_to_vector (load ...))) whenever
the load can be folded. All the logic and instruction emission is
working but because of PR8156, there are no ways to match loads, cause
they can never be folded for splats. Thus, the tests are XFAILed, but
I've tested and exercised all the logic using a relaxed version for
checking the foldable loads, as if the bug was already fixed. This
should work out of the box once PR8156 gets fixed since MayFoldLoad will
work as expected.
llvm-svn: 137810
vinsertf128 $1 + vpermilps $0, remove the old code that used to first
do the splat in a 128-bit vector and then insert it into a larger one.
This is better because the handling code gets simpler and also makes a
better room for the upcoming vbroadcast!
llvm-svn: 137807
there is no support for native 256-bit shuffles, be more smart in some
cases, for example, when you can extract specific 128-bit parts and use
regular 128-bit shuffles for them. Example:
For this shuffle:
shufflevector <4 x i64> %a, <4 x i64> %b, <4 x i32>
<i32 1, i32 0, i32 7, i32 6>
This was expanded to:
vextractf128 $1, %ymm1, %xmm2
vpextrq $0, %xmm2, %rax
vmovd %rax, %xmm1
vpextrq $1, %xmm2, %rax
vmovd %rax, %xmm2
vpunpcklqdq %xmm1, %xmm2, %xmm1
vpextrq $0, %xmm0, %rax
vmovd %rax, %xmm2
vpextrq $1, %xmm0, %rax
vmovd %rax, %xmm0
vpunpcklqdq %xmm2, %xmm0, %xmm0
vinsertf128 $1, %xmm1, %ymm0, %ymm0
ret
Now we get:
vshufpd $1, %xmm0, %xmm0, %xmm0
vextractf128 $1, %ymm1, %xmm1
vshufpd $1, %xmm1, %xmm1, %xmm1
vinsertf128 $1, %xmm1, %ymm0, %ymm0
llvm-svn: 137733
vectors. It operates on 128-bit elements instead of regular scalar
types. Recognize shuffles that are suitable for VPERM2F128 and teach
the x86 legalizer how to handle them.
llvm-svn: 137519
(for example, after integer operation), do not pack the registers into a YMM
before saving. Its better to save as two XMM registers.
Before:
vinsertf128 $1, %xmm3, %ymm0, %ymm3
vinsertf128 $0, %xmm1, %ymm3, %ymm1
vmovaps %ymm1, 416(%rsp)
After:
vmovaps %xmm3, 416+16(%rsp)
vmovaps %xmm1, 416(%rsp)
llvm-svn: 137308
data in-register prior to saving to memory. When we reorder the data in memory
we prevent the need to save multiple scalars to memory, making a single regular
store.
llvm-svn: 137238