Patch implements parser of pubnames/pubtypes tables instead of static
function used before. It is now should be possible to reuse it
in LLD or other projects and clean up the duplication code.
Differential revision: https://reviews.llvm.org/D27851
llvm-svn: 290040
Summary:
PseudoSourceValue can be used to attach a target specific value for "well behaved" side-effects lowered from target specific intrinsics.
This is useful whenever there is not an LLVM IR Value around when representing such "well behaved" side-effected operations in backends by attaching a MachineMemOperand with a custom PseudoSourceValue as this makes the scheduler not treating them as "GlobalMemoryObjects" which triggers a logic that makes the operation act like a barrier in the Schedule DAG.
This patch adds another Kind to the PseudoSourceValue object which is "TargetCustom". It indicates a type of PseudoSourceValue that has a target specific meaning (aka. LLVM shouldn't assume any specific usage for such a PSV).
It supports the possibility of having many different kinds of "TargetCustom" PseudoSourceValues.
We had a discussion about if this was valuable or not (in particular because there was a believe that PSV were going away sooner or later) but seems like they are not going anywhere and I think they are useful backend side.
It is not clear the interaction of this with MIRParser (do we need a target hook to parse these?) and I would like a comment from Alex about that :)
Reviewers: arphaman, hfinkel, arsenm
Subscribers: Eugene.Zelenko, llvm-commits
Patch By: Marcello Maggioni
Differential Revision: https://reviews.llvm.org/D13575
llvm-svn: 290037
unittests/ADT/TwineTest.cpp:106:38: error: field 'Count' will be initialized after base 'llvm::FormatAdapter<int>' [-Werror,-Wreorder]
explicit formatter(int &Count) : Count(Count), FormatAdapter(0) {}
llvm-svn: 290029
Re-apply r288561: Liveness tracking should be correct now after r290014.
Previously this pass was using up to 5% compile time in some cases which
is a bit much for what it is doing. The pass featured a full blown
data-flow analysis which in the default configuration was restricted to a
single block.
This rewrites the pass under the assumption that we only ever work on a
single block. This is done in a single pass maintaining a state machine
per general purpose register to catch LOH patterns.
Differential Revision: https://reviews.llvm.org/D27329
llvm-svn: 290026
These are unnecessary, the declarations already carry the 'extern C' property, and if there is mismatch
between declaration and definition then we will get linker errors via libclang.exports.
llvm-svn: 290025
Update the UnixAPIChecker to not diagnose for calls to functions that
are declared in C++ namespaces. This avoids false positives when a
namespaced function has the same name as a Unix API.
This address PR28331.
llvm-svn: 290023
BPI may trigger signed overflow UB while computing branch probabilities for
cold calls or to unreachables. For example, with our current choice of weights,
we'll crash if there are >= 2^12 branches to an unreachable.
Use a safer BranchProbability constructor which is better at handling fractions
with large denominators.
Changes since the initial commit:
- Use explicit casts to ensure that multiplication operands are 64-bit
ints.
rdar://problem/29368161
Differential Revision: https://reviews.llvm.org/D27862
llvm-svn: 290022
This reverts commit r290016. It breaks this bot, even though the test
passes locally:
http://bb.pgr.jp/builders/ninja-x64-msvc-RA-centos6/builds/32956/
AnalysisTests: /home/bb/ninja-x64-msvc-RA-centos6/llvm-project/llvm/lib/Support/BranchProbability.cpp:52: static llvm::BranchProbability llvm::BranchProbability::getBranchProbability(uint64_t, uint64_t): Assertion `Numerator <= Denominator && "Probability cannot be bigger than 1!"' failed.
llvm-svn: 290019
BPI may trigger signed overflow UB while computing branch probabilities
for cold calls or to unreachables. For example, with our current choice
of weights, we'll crash if there are >= 2^12 branches to an unreachable.
Use a safer BranchProbability constructor which is better at handling
fractions with large denominators.
rdar://problem/29368161
Differential Revision: https://reviews.llvm.org/D27862
llvm-svn: 290016
Still prints the empty/tombstone keys (which some people would prefer,
but I find pretty noisy) because I haven't yet found a reliable way to
skip them (it requires calling into the running process to do so, which
isn't ideal for a pretty printer (doesn't work on a core file, for
example) - and gdb's ability to do so (or my ability to figure out how
to get gdb to do so) is limited) left some breadcrumbs for the next
person who might try to address that.
llvm-svn: 290011
LLVM's JIT is now the foundation of dynamic-compilation features for many languages. Clang also has low-level support for dynamic compilation (ASTImporter and ExternalASTSource, notably). How the compiler is set up for dynamic parsing is generally left up to individual clients, for example LLDB's C/C++/Objective-C expression parser and the ROOT project.
Although this arrangement offers external clients the flexibility to implement dynamic features as they see fit, the lack of an in-tree client means that subtle bugs can be introduced that cause regressions in the external clients but aren't caught by tests (or users) until much later. LLDB for example regularly encounters complicated ODR violation scenarios where it is not immediately clear who is at fault.
Other external clients (notably, Cling) rely on similar functionality, and another goal is to break this functionality up into composable parts so that any client can be built easily on top of Clang without requiring extensive additional code.
I propose that the parts required to build a simple expression parser be added to Clang. Initially, I aim to have the following features:
- A piece that looks up external declarations from a variety of sources (e.g., from previous dynamic compilations, from modules, or from DWARF) and uses clear conflict resolution rules to reconcile differences, with easily understood errors. This functionality will be supported by in-tree tests.
- A piece that works hand in hand with the LLVM JIT to resolve the locations of external declarations so that e.g. variables can be redeclared and (for high-performance applications like DTrace) external variables can be accessed directly from the registers where they reside.
This commit adds a tester that parses a sequence of source files and then uses them as source data for an expression. External references are resolved using an ExternalASTSource that responds to name queries using an ASTImporter. This is the setup that LLDB uses, and the motivating reason for MinimalImport in ASTImporter. When complete, this tester will implement the first of the above goals.
Differential Revision: https://reviews.llvm.org/D27180
llvm-svn: 290004
The Mach-O command line flag like "-arch armv7m" does not match the
arch name part of its llvm Triple which is "thumbv7m-apple-darwin”.
I think the best way to fix this is to have
llvm::object::MachOObjectFile::getArchTriple() optionally return the
name of the Mach-O arch flag that would be used with -arch that
matches the CPUType and CPUSubType. Then change
llvm::object::MachOUniversalBinary::ObjectForArch::getArchTypeName()
to use that and change it to getArchFlagName() as the type name is
really part of the Triple and the -arch flag name is a Mach-O thing
for a specific Triple with a specific Mcpu value.
rdar://29663637
llvm-svn: 290001