This commit fixes the DPP sequence in the atomic optimizer (which was
previously missing the row_shr:3 step), and works around a read_register
exec bug by using a ballot instead.
Differential Revision: https://reviews.llvm.org/D57737
llvm-svn: 353703
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
The new atomic optimizer I previously added in D51969 did not work
correctly when a pixel shader was using derivatives, and had helper
lanes active.
To fix this we add an llvm.amdgcn.ps.live call that guards a branch
around the entire atomic operation - ensuring that all helper lanes are
inactive within the wavefront when we compute our atomic results.
I've added a test case that can cause derivatives, and exposes the
problem.
Differential Revision: https://reviews.llvm.org/D53930
llvm-svn: 346128
This commit adds a new IR level pass to the AMDGPU backend to perform
atomic optimizations. It works by:
- Running through a function and finding atomicrmw add/sub or uses of
the atomic buffer intrinsics for add/sub.
- If all arguments except the value to be added/subtracted are uniform,
record the value to be optimized.
- Run through the atomic operations we can optimize and, depending on
whether the value is uniform/divergent use wavefront wide operations
(DPP in the divergent case) to calculate the total amount to be
atomically added/subtracted.
- Then let only a single lane of each wavefront perform the atomic
operation, reducing the total number of atomic operations in flight.
- Lastly we recombine the result from the single lane to each lane of
the wavefront, and calculate our individual lanes offset into the
final result.
Differential Revision: https://reviews.llvm.org/D51969
llvm-svn: 343973