in non-void functions that fall off at the end without returning a value when
compiling C++.
Clang uses the new compiler flag to determine when it should treat control flow
paths that fall off the end of a non-void function as unreachable. If
-fno-strict-return is on, the code generator emits the ureachable and trap
IR only when the function returns either a record type with a non-trivial
destructor or another non-trivially copyable type.
The primary goal of this flag is to avoid treating falling off the end of a
non-void function as undefined behaviour. The burden of undefined behaviour
is placed on the caller instead: if the caller ignores the returned value then
the undefined behaviour is avoided. This kind of behaviour is useful in
several cases, e.g. when compiling C code in C++ mode.
rdar://13102603
Differential Revision: https://reviews.llvm.org/D27163
llvm-svn: 290960
This commit fixes a crash that occurs when -print-decl-contexts AST consumer
tries to print an unhandled declaration.
rdar://19467234
Differential Revision: https://reviews.llvm.org/D26964
llvm-svn: 290887
This commit fixes a crash that occurs when -print-decl-contexts AST consumer
tries to print an unhandled declaration.
rdar://19467234
Differential Revision: https://reviews.llvm.org/D26964
llvm-svn: 290886
This commit fixes a crash that occurs when -print-decl-contexts AST consumer
tries to print an unhandled declaration.
rdar://19467234
Differential Revision: https://reviews.llvm.org/D26964
llvm-svn: 290885
This commit fixes a crash that occurs when -print-decl-contexts AST consumer
tries to print an unhandled declaration.
rdar://19467234
Differential Revision: https://reviews.llvm.org/D26964
llvm-svn: 290884
This commit fixes a crash that occurs when -print-decl-contexts AST consumer
tries to print an unhandled declaration.
rdar://19467234
Differential Revision: https://reviews.llvm.org/D26964
llvm-svn: 290882
This commit fixes a crash that occurs when -print-decl-contexts AST consumer
tries to print an unhandled declaration.
rdar://19467234
Differential Revision: https://reviews.llvm.org/D26964
llvm-svn: 290881
This commit fixes a crash that occurs when -print-decl-contexts AST consumer
tries to print an unhandled declaration.
rdar://19467234
Differential Revision: https://reviews.llvm.org/D26964
llvm-svn: 290880
to be specified for a template template parameter whenever the parameter is at
least as specialized as the argument (when there's an obvious and correct
mapping from uses of the parameter to uses of the argument). For example, a
template with more parameters can be passed to a template template parameter
with fewer, if those trailing parameters have default arguments.
This is disabled by default, despite being a DR resolution, as it's fairly
broken in its current state: there are no partial ordering rules to cope with
template template parameters that have different parameter lists, meaning that
code that attempts to decompose template-ids based on arity can hit unavoidable
ambiguity issues.
The diagnostics produced on a non-matching argument are also pretty bad right
now, but I aim to improve them in a subsequent commit.
llvm-svn: 290792
manager, and a code path to use it.
The option is actually a top-level option but does contain
'experimental' in the name. This is the compromise suggested by Richard
in discussions. We expect this option will be around long enough and
have enough users towards the end that it merits not being relegated to
CC1, but it still needs to be clear that this option will go away at
some point.
The backend code is a fresh codepath dedicated to handling the flow with
the new pass manager. This was also Richard's suggested code structuring
to essentially leave a clean path for development rather than carrying
complexity or idiosyncracies of how we do things just to share code with
the parts of this in common with the legacy pass manager. And it turns
out, not much is really in common even though we use the legacy pass
manager for codegen at this point.
I've switched a couple of tests to run with the new pass manager, and
they appear to work. There are still plenty of bugs that need squashing
(just with basic experiments I've found two already!) but they aren't in
this code, and the whole point is to expose the necessary hooks to start
experimenting with the pass manager in more realistic scenarios.
That said, I want to *strongly caution* anyone itching to play with
this: it is still *very shaky*. Several large components have not yet
been shaken down. For example I have bugs in both the always inliner and
inliner that I have already spotted and will be fixing independently.
Still, this is a fun milestone. =D
One thing not in this patch (but that might be very reasonable to add)
is some level of support for raw textual pass pipelines such as what
Sean had a patch for some time ago. I'm mostly interested in the more
traditional flow of getting the IR out of Clang and then running it
through opt, but I can see other use cases so someone may want to add
it.
And of course, *many* features are not yet supported!
- O1 is currently more like O2
- None of the sanitizers are wired up
- ObjC ARC optimizer isn't wired up
- ...
So plenty of stuff still lef to do!
Differential Revision: https://reviews.llvm.org/D28077
llvm-svn: 290450
-fno-inline-functions, -O0, and optnone.
These were really, really tangled together:
- We used the noinline LLVM attribute for -fno-inline
- But not for -fno-inline-functions (breaking LTO)
- But we did use it for -finline-hint-functions (yay, LTO is happy!)
- But we didn't for -O0 (LTO is sad yet again...)
- We had weird structuring of CodeGenOpts with both an inlining
enumeration and a boolean. They interacted in weird ways and
needlessly.
- A *lot* of set smashing went on with setting these, and then got worse
when we considered optnone and other inlining-effecting attributes.
- A bunch of inline affecting attributes were managed in a completely
different place from -fno-inline.
- Even with -fno-inline we failed to put the LLVM noinline attribute
onto many generated function definitions because they didn't show up
as AST-level functions.
- If you passed -O0 but -finline-functions we would run the normal
inliner pass in LLVM despite it being in the O0 pipeline, which really
doesn't make much sense.
- Lastly, we used things like '-fno-inline' to manipulate the pass
pipeline which forced the pass pipeline to be much more
parameterizable than it really needs to be. Instead we can *just* use
the optimization level to select a pipeline and control the rest via
attributes.
Sadly, this causes a bunch of churn in tests because we don't run the
optimizer in the tests and check the contents of attribute sets. It
would be awesome if attribute sets were a bit more FileCheck friendly,
but oh well.
I think this is a significant improvement and should remove the semantic
need to change what inliner pass we run in order to comply with the
requested inlining semantics by relying completely on attributes. It
also cleans up tho optnone and related handling a bit.
One unfortunate aspect of this is that for generating alwaysinline
routines like those in OpenMP we end up removing noinline and then
adding alwaysinline. I tried a bunch of other approaches, but because we
recompute function attributes from scratch and don't have a declaration
here I couldn't find anything substantially cleaner than this.
Differential Revision: https://reviews.llvm.org/D28053
llvm-svn: 290398
Much to my surprise, '-disable-llvm-optzns' which I thought was the
magical flag I wanted to get at the raw LLVM IR coming out of Clang
deosn't do that. It still runs some passes over the IR. I don't want
that, I really want the *raw* IR coming out of Clang and I strongly
suspect everyone else using it is in the same camp.
There is actually a flag that does what I want that I didn't know about
called '-disable-llvm-passes'. I suspect many others don't know about it
either. It both does what I want and is much simpler.
This removes the confusing version and makes that spelling of the flag
an alias for '-disable-llvm-passes'. I've also moved everything in Clang
to use the 'passes' spelling as it seems both more accurate (*all* LLVM
passes are disabled, not just optimizations) and much easier to remember
and spell correctly.
This is part of simplifying how Clang drives LLVM to make it cleaner to
wire up to the new pass manager.
Differential Revision: https://reviews.llvm.org/D28047
llvm-svn: 290392
Merge all VFS mapped files inside -ivfsoverlay inputs into the vfs
overlay provided by the crash reproducer. This is the last missing piece
to allow crash reproducers to fully work with user frameworks; when
combined with headermaps, it allows clang to find additional frameworks.
rdar://problem/27913709
llvm-svn: 290326
Added a map to associate types and declarations with extensions.
Refactored existing diagnostic for disabled types associated with extensions and extended it to declarations for generic situation.
Fixed some bugs for types associated with extensions.
Allow users to use pragma to declare types and functions for supported extensions, e.g.
#pragma OPENCL EXTENSION the_new_extension_name : begin
// declare types and functions associated with the extension here
#pragma OPENCL EXTENSION the_new_extension_name : end
Differential Revision: https://reviews.llvm.org/D21698
llvm-svn: 289979
At least the plugin used by the LibreOffice build
(<https://wiki.documentfoundation.org/Development/Clang_plugins>) indirectly
uses those members (through inline functions in LLVM/Clang include files in turn
using them), but they are not exported by utils/extract_symbols.py on Windows,
and accessing data across DLL/EXE boundaries on Windows is generally
problematic.
Differential Revision: https://reviews.llvm.org/D26671
llvm-svn: 289647
In r267772, we had set the PS4's default dialect for both C and
Objective-C to gnu99. Make that change only for C; we don't really
support Objective-C/C++ so there's no point fiddling the dialect.
llvm-svn: 289625
Sort the headers by name before adding the includes in
collectModuleHeaderIncludes. This makes the include order for building
umbrellas deterministic across different filesystems and also guarantees
that the ASTWriter always dump top headers in the same order.
There's currently no good way to test for this behavior.
rdar://problem/28116411
llvm-svn: 289478
Collect the necessary input PCH files.
Do not try to validate the AST before copying it out because if the
crash is in this path, we won't be able to collect it. Instead only
check if it's a file containg an AST.
rdar://problem/27913709
llvm-svn: 289460
Use the vfs lookup instead of real filesytem and handle the case where
-include-pch is a directory and this dir is searched for a PCH.
llvm-svn: 289459
Include headermaps (.hmap files) in the .cache directory and
add VFS entries. All headermaps are known after HeaderSearch
setup, collect them right after.
rdar://problem/27913709
llvm-svn: 289360
Recover better from an incompatible .pcm file being provided by -fmodule-file=. We try to include the headers of the module textually in this case, still enforcing the modules semantic rules. In order to make that work, we need to still track that we're entering and leaving the module. Also, if the module was also marked as unavailable (perhaps because it was missing a file), we shouldn't mark the module unavailable -- we don't need the module to be complete if we're going to enter it textually.
llvm-svn: 288741
This reverts commit r288449.
I believe that this is currently faulty wrt. modules being imported
inside namespaces. Adding these lines to the new test:
namespace n {
#include "foo.h"
}
Makes it break with
fatal error: import of module 'M' appears within namespace 'n'
However, I believe it should fail with
error: redundant #include of module 'M' appears within namespace 'n'
I have tracked this down to us now inserting a tok::annot_module_begin
instead of a tok::annot_module_include in
Preprocessor::HandleIncludeDirective() and then later in
Parser::parseMisplacedModuleImport(), we hit the code path for
tok::annot_module_begin, which doesn't set FromInclude of
checkModuleImportContext to true (thus leading to the "wrong"
diagnostic).
llvm-svn: 288626
removed as a duplicate header search path
The commit r126167 started passing the First index into RemoveDuplicates, but
forgot to update 0 to First in the loop that looks for the duplicate. This
resulted in a bug where an -iquoted search path was incorrectly removed if you
passed in the same path into -iquote and more than one time into -isystem.
rdar://23991350
Differential Revision: https://reviews.llvm.org/D27298
llvm-svn: 288491
We try to include the headers of the module textually in this case, still
enforcing the modules semantic rules. In order to make that work, we need to
still track that we're entering and leaving the module. Also, if the module was
also marked as unavailable (perhaps because it was missing a file), we
shouldn't mark the module unavailable -- we don't need the module to be
complete if we're going to enter it textually.
llvm-svn: 288449
This commit adds a new predefined macro named __OBJC_BOOL_IS_BOOL that describes
the Objective-C boolean type: its value is zero if the Objective-C boolean uses
the signed character type, otherwise its value is one as the Objective-C boolean
uses the builtin boolean type.
rdar://21170440
Differential Revision: https://reviews.llvm.org/D26234
llvm-svn: 287529
Summary:
This used to work because system headers are found in a (somewhat)
predictable set of locations on Linux. But this is not the case on
MacOS; without this change, we don't look in the right places for our
headers when doing device-side compilation on Mac.
Reviewers: tra
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D26776
llvm-svn: 287286
Re-introduce r285411.
Implement the -dI as supported by GCC: Output ‘#include’ directives in addition
to the result of preprocessing.
This change aims to add this option, pass it through to the preprocessor via
the options class, and when inclusions occur we output some information (+ test
cases).
Patch by Steve O'Brien!
Differential Revision: https://reviews.llvm.org/D26089
llvm-svn: 287275