The save area is twice as big and there is no struct return slot. The
stack pointer is always 16-byte aligned (after adding the bias).
Also eliminate the stack adjustment instructions around calls when the
function has a reserved stack frame.
llvm-svn: 179083
I brazenly think this change is slightly simpler than r178793 because:
- no "state" in functor
- "OpndPtrs[i]" looks simpler than "&Opnds[OpndIndices[i]]"
While I can reproduce the probelm in Valgrind, it is rather difficult to come up
a standalone testing case. The reason is that when an iterator is invalidated,
the stale invalidated elements are not yet clobbered by nonsense data, so the
optimizer can still proceed successfully.
Thank Benjamin for fixing this bug and generously providing the test case.
llvm-svn: 179062
The costs are overfitted so that I can still use the legalization factor.
For example the following kernel has about half the throughput vectorized than
unvectorized when compiled with SSE2. Before this patch we would vectorize it.
unsigned short A[1024];
double B[1024];
void f() {
int i;
for (i = 0; i < 1024; ++i) {
B[i] = (double) A[i];
}
}
radar://13599001
llvm-svn: 179033
PowerPC has a conditional branch to the link register (return) instruction: BCLR.
This should be used any time when we'd otherwise have a conditional branch to a
return. This adds a small pass, PPCEarlyReturn, which runs just prior to the
branch selection pass (and, importantly, after block placement) to generate
these conditional returns when possible. It will also eliminate unconditional
branches to returns (these happen rarely; most of the time these have already
been tail duplicated by the time PPCEarlyReturn is invoked). This is a nice
optimization for small functions that do not maintain a stack frame.
llvm-svn: 179026
I've managed to convince myself that AArch64's acquire/release
instructions are sufficient to guarantee C++11's required semantics,
even in the sequentially-consistent case.
llvm-svn: 179005
First, we should not cheat: fsel-based lowering of select_cc is a
finite-math-only optimization (the ISA manual, section F.3 of v2.06, makes
this clear, as does a note in our own README).
This also adds fsel-based lowering of EQ and NE condition codes. As it turned
out, fsel generation was covered by a grand total of zero regression test
cases. I've added some test cases to cover the existing behavior (which is now
finite-math only), as well as the new EQ cases.
llvm-svn: 179000
LoadCommandInfo was needed to keep a command and its offset in the file. Now
that we always have a pointer to the command, we don't need the offset.
llvm-svn: 178991
The fix for PR14972 in r177055 introduced a real think-o in the *store*
side, likely because I was much more focused on the load side. While we
can arbitrarily widen (or narrow) a loaded value, we can't arbitrarily
widen a value to be stored, as that changes the width of memory access!
Lock down the code path in the store rewriting which would do this to
only handle the intended circumstance.
All of the existing tests continue to pass, and I've added a test from
the PR.
llvm-svn: 178974
a relocation across sections. Do this for DW_AT_stmt list in the
skeleton CU and check the relocations in the debug_info section.
Add a FIXME for multiple CUs.
llvm-svn: 178969
Integer return values are sign or zero extended by the callee, and
structs up to 32 bytes in size can be returned in registers.
The CC_Sparc64 CallingConv definition is shared between
LowerFormalArguments_64 and LowerReturn_64. Function arguments and
return values are passed in the same registers.
The inreg flag is also used for return values. This is required to handle
C functions returning structs containing floats and ints:
struct ifp {
int i;
float f;
};
struct ifp f(void);
LLVM IR:
define inreg { i32, float } @f() {
...
ret { i32, float } %retval
}
The ABI requires that %retval.i is returned in the high bits of %i0
while %retval.f goes in %f1.
Without the inreg return value attribute, %retval.i would go in %i0 and
%retval.f would go in %f3 which is a more efficient way of returning
%multiple values, but it is not ABI compliant for returning C structs.
llvm-svn: 178966
64-bit SPARC v9 processes use biased stack and frame pointers, so the
current function's stack frame is located at %sp+BIAS .. %fp+BIAS where
BIAS = 2047.
This makes more local variables directly accessible via [%fp+simm13]
addressing.
llvm-svn: 178965
There are certain PPC instructions into which we can fold a zero immediate
operand. We can detect such cases by looking at the register class required
by the using operand (so long as it is not otherwise constrained).
llvm-svn: 178961
All arguments are formally assigned to stack positions and then promoted
to floating point and integer registers. Since there are more floating
point registers than integer registers, this can cause situations where
floating point arguments are assigned to registers after integer
arguments that where assigned to the stack.
Use the inreg flag to indicate 32-bit fragments of structs containing
both float and int members.
The three-way shadowing between stack, integer, and floating point
registers requires custom argument lowering. The good news is that
return values are passed in the exact same way, and we can share the
code.
Still missing:
- Update LowerReturn to handle structs returned in registers.
- LowerCall.
- Variadic functions.
llvm-svn: 178958