- Remodel Expr::EvaluateAsInt to behave like the other EvaluateAs* functions,
and add Expr::EvaluateKnownConstInt to capture the current fold-or-assert
behaviour.
- Factor out evaluation of bitfield bit widths.
- Fix a few places which would evaluate an expression twice: once to determine
whether it is a constant expression, then again to get the value.
llvm-svn: 141561
the lifetime of the block by copying it to the heap, or else we'll get
a dangling reference because the code working with the non-block-typed
object will not know it needs to copy.
There is some danger here, e.g. with assigning a block literal to an
unsafe variable, but, well, it's an unsafe variable.
llvm-svn: 139451
than conversions of C pointers to ObjC pointers. In order to ensure that
we've caught every case, add asserts to CastExpr that strictly determine
which cast kind is used for which kind of bit cast.
llvm-svn: 139352
builtin types (When requested). This is another step toward making
ASTUnit build the ASTContext as needed when loading an AST file,
rather than doing so after the fact. No actual functionality change (yet).
llvm-svn: 138985
This makes the code duplication of implicit special member handling even worse,
but the cleanup will have to come later. For now, this works.
Follow-up with tests for explicit defaulting and enabling the __has_feature
flag to come.
llvm-svn: 138821
to represent a fully-substituted non-type template parameter.
This should improve source fidelity, as well as being generically
useful for diagnostics and such.
llvm-svn: 135243
where we have an immediate need of a retained value.
As an exception, don't do this when the call is made as the immediate
operand of a __bridge retain. This is more in the way of a workaround
than an actual guarantee, so it's acceptable to be brittle here.
rdar://problem/9504800
llvm-svn: 134605
MaterializeTemporaryExpr captures a reference binding to a temporary
value, making explicit that the temporary value (a prvalue) needs to
be materialized into memory so that its address can be used. The
intended AST invariant here is that a reference will always bind to a
glvalue, and MaterializeTemporaryExpr will be used to convert prvalues
into glvalues for that binding to happen. For example, given
const int& r = 1.0;
The initializer of "r" will be a MaterializeTemporaryExpr whose
subexpression is an implicit conversion from the double literal "1.0"
to an integer value.
IR generation benefits most from this new node, since it was
previously guessing (badly) when to materialize temporaries for the
purposes of reference binding. There are likely more refactoring and
cleanups we could perform there, but the introduction of
MaterializeTemporaryExpr fixes PR9565, a case where IR generation
would effectively bind a const reference directly to a bitfield in a
struct. Addresses <rdar://problem/9552231>.
llvm-svn: 133521
ConvertType on InitListExprs as they are being converted. This is
needed for a forthcoming patch, and improves the IR generated anyway
(see additional type names in testcases).
This patch also converts a bunch of std::vector's in CGObjCMac to use
C arrays. There are a ton more that should be converted as well.
llvm-svn: 133413
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
Type::isUnsignedIntegerOrEnumerationType(), which are like
Type::isSignedIntegerType() and Type::isUnsignedIntegerType() but also
consider the underlying type of a C++0x scoped enumeration type.
Audited all callers to the existing functions, switching those that
need to also handle scoped enumeration types (e.g., those that deal
with constant values) over to the new functions. Fixes PR9923 /
<rdar://problem/9447851>.
llvm-svn: 131735
double data[20000000] = {0};
we would blow out the memory by creating 20M Exprs to fill out the initializer.
To fix this, if the initializer list initializes an array with more elements than
there are initializers in the list, have InitListExpr store a single 'ArrayFiller' expression
that specifies an expression to be used for value initialization of the rest of the elements.
Fixes rdar://9275920.
llvm-svn: 129896
for __unknown_anytype resolution to destructively modify the AST. So that's
what it does now, which significantly simplifies some of the implementation.
Normal member calls work pretty cleanly now, and I added support for
propagating unknown-ness through &.
llvm-svn: 129331
represents a dynamic cast where we know that the result is always null.
For example:
struct A {
virtual ~A();
};
struct B final : A { };
struct C { };
bool f(B* b) {
return dynamic_cast<C*>(b);
}
llvm-svn: 129256
The idea is that you can create a VarDecl with an unknown type, or a
FunctionDecl with an unknown return type, and it will still be valid to
access that object as long as you explicitly cast it at every use. I'm
still going back and forth about how I want to test this effectively, but
I wanted to go ahead and provide a skeletal implementation for the LLDB
folks' benefit and because it also improves some diagnostic goodness for
placeholder expressions.
llvm-svn: 129065
add support for the OpenCL __private, __local, __constant and
__global address spaces, as well as the __read_only, _read_write and
__write_only image access specifiers. Patch originally by ARM;
language-specific address space support by myself.
llvm-svn: 127915
replace some uses of FieldOffsetInBytes. The remaining uses of
FieldOffsetInBytes will be replaced once NextFieldOffsetInBytes is converted
to CharUnits. No change in functionality intended.
llvm-svn: 127641
a zero constant for a complete class. rdar://problem/8424975
To make this happen, track the field indexes for virtual bases
in the complete object. I'm curious whether we might be better
off making CGRecordLayoutBuilder *much* more reliant on
ASTRecordLayout; we're currently duplicating an awful lot of the ABI
layout logic.
llvm-svn: 125555
right for anonymous struct/union members led to me discovering some
seemingly broken code in that area of Sema, which I fixed, partly by
changing the representation of member pointer constants so that
IndirectFieldDecls aren't expanded. This led to assorted cleanups with
member pointers in CodeGen, and while I was doing that I saw some random
other things to clean up.
llvm-svn: 124785
zextOrTrunc(), and APSInt methods extend(), extOrTrunc() and new method
trunc(), to be const and to return a new value instead of modifying the
object in place.
llvm-svn: 121121
class; they should just be completely opaque throughout IR gen now,
although I haven't really audited that.
Fix a bug apparently inherited from gcc-4.2 where we failed to null-check
member data pointers when performing derived-to-base or base-to-derived
conversions on them.
llvm-svn: 111789
Make CGT defer to the ABI on all member pointer types.
This requires giving CGT a handle to the ABI.
It's way easier to make that work if we avoid lazily creating the ABI.
Make it so.
llvm-svn: 111786
pointers. I find the resulting code to be substantially cleaner, and it
makes it very easy to use the same APIs for data member pointers (which I have
conscientiously avoided here), and it avoids a plethora of potential
inefficiencies due to excessive memory copying, but we'll have to see if it
actually works.
llvm-svn: 111776
duplication between the constant and non-constant paths in all of this.
Implement ARM ABI semantics for member pointer constants and conversion.
llvm-svn: 111772
This takes some trickery since CastExpr has subclasses (and indeed,
is abstract).
Also, smoosh the CastKind into the bitfield from Expr.
Drops two words of storage from Expr in the common case of expressions
which don't need inheritance paths. Avoids a separate allocation and
another word of overhead in cases needing inheritance paths. Also has
the advantage of not leaking memory, since destructors for AST nodes are
never run.
llvm-svn: 110507
isn't possible to compute.
This patch is mostly refactoring; the key change is the addition of the code
starting with the comment, "Check whether the function has a computable LLVM
signature." The solution here is essentially the same as the way the
vtable code handles such functions.
llvm-svn: 105151
struct may cause it to shrink more than one byte. Before
my recent changes we compiled the new test into:
%0 = type { [6 x i8] }
@x = global %0 { [6 x i8] undef }, align 2 ; <%0*> [#uses=0]
which is obviously bogus. Now we compile it into:
%0 = type <{ i32, i8, i8 }>
@x = global %0 zeroinitializer, align 2 ; <%0*> [#uses=0]
Where the last byte only is tail padding.
llvm-svn: 101536
elements with explicit zero values instead of with tail padding.
On an example like this:
struct foo { int a; int b; };
struct foo fooarray[] = {
{1, 2},
{4},
};
We now lay this out as:
@fooarray = global [2 x %struct.foo] [%struct.foo { i32 1, i32 2 }, %struct.foo { i32 4, i32 0 }]
instead of as:
@fooarray = global %0 <{ %struct.foo { i32 1, i32 2 }, %1 { i32 4, [4 x i8] zeroinitializer } }>
Preserving both the struct type of the second element, but also the array type of the entire thing.
llvm-svn: 101155
trailing fields may not be represented in initializer lists, they
are being handled as padding and those fields *must* be zero
initialized.
llvm-svn: 101067
- Don't use GlobalAliases with non-0 GEPs (GNU runtime) - this was unsupported and LLVM will be generating errors if you do it soon. This also simplifies the code generated by the GNU runtime a bit.
- Make GetSelector() return a constant (GNU runtime), not a load of a store of a constant.
- Recognise @selector() expressions as valid static initialisers (as GCC does).
- Add methods to GCObjCRuntime to emit selectors as constants (needed for using @selector() expressions as constants. These need implementing for the Mac runtimes - I couldn't figure out how to do this, they seem to require a load.
- Store an ObjCMethodDecl in an ObjCSelectorExpr so that we can get at the type information for the selector. This is needed for generating typed selectors from @selector() expressions (as GCC does). Ideally, this information should be stored in the Selector, but that would be an invasive change. We should eventually add checks for common uses of @selector() expressions. Possibly adding an attribute that can be applied to method args providing the types of a selector so, for example, you'd do something like this:
- (id)performSelector: __attribute__((selector_types(id, SEL, id)))(SEL)
withObject: (id)object;
Then, any @selector() expressions passed to the method will be check to ensure that it conforms to this signature. We do this at run time on the GNU runtime already, but it would be nice to do it at compile time on all runtimes.
- Made @selector() expressions emit type info if available and the runtime supports it.
Someone more familiar with the Mac runtime needs to implement the GetConstantSelector() function in CGObjCMac. This currently just assert()s.
llvm-svn: 95189
using the new LLVM support for this. This is temporarily hiding
behind horrible and ugly #ifdefs until the time when the optimizer
is stable (hopefully a week or so). Until then, lets make it "opt in" :)
llvm-svn: 85446
qualified reference to a declaration that is not a non-static data
member or non-static member function, e.g.,
namespace N { int i; }
int j = N::i;
Instead, extend DeclRefExpr to optionally store the qualifier. Most
clients won't see or care about the difference (since
QualifierDeclRefExpr inherited DeclRefExpr). However, this reduces the
number of top-level expression types that clients need to cope with,
brings the implementation of DeclRefExpr into line with MemberExpr,
and simplifies and unifies our handling of declaration references.
Extended DeclRefExpr to (optionally) store explicitly-specified
template arguments. This occurs when naming a declaration via a
template-id (which will be stored in a TemplateIdRefExpr) that,
following template argument deduction and (possibly) overload
resolution, is replaced with a DeclRefExpr that refers to a template
specialization but maintains the template arguments as written.
llvm-svn: 84962
which is a common idiom to improve PIC'ness of code using the addr of
label extension. This implementation is a gross hack, but the only other
alternative would be to teach evalutate about this horrid combination.
While GCC allows things like "&&foo - &&bar + 1", people don't use this
in practice. This implements PR5131.
llvm-svn: 83957
Issue reported on cfe-dev.
Also fixed the code to use isConstant to determine whether to generate a
constant global, to be consistent with CodeGenModule. This probably
needs to be refactored to deal with C++, though.
llvm-svn: 80131
Type::getAsReferenceType() -> Type::getAs<ReferenceType>()
Type::getAsRecordType() -> Type::getAs<RecordType>()
Type::getAsPointerType() -> Type::getAs<PointerType>()
Type::getAsBlockPointerType() -> Type::getAs<BlockPointerType>()
Type::getAsLValueReferenceType() -> Type::getAs<LValueReferenceType>()
Type::getAsRValueReferenceType() -> Type::getAs<RValueReferenceType>()
Type::getAsMemberPointerType() -> Type::getAs<MemberPointerType>()
Type::getAsReferenceType() -> Type::getAs<ReferenceType>()
Type::getAsTagType() -> Type::getAs<TagType>()
And remove Type::getAsReferenceType(), etc.
This change is similar to one I made a couple weeks ago, but that was partly
reverted pending some additional design discussion. With Doug's pending smart
pointer changes for Types, it seemed natural to take this approach.
llvm-svn: 77510
until Doug Gregor's Type smart pointer code lands (or more discussion occurs).
These methods just call the new Type::getAs<XXX> methods, so we still have
reduced implementation redundancy. Having explicit getAsXXXType() methods makes
it easier to set breakpoints in the debugger.
llvm-svn: 76193
Remove ASTContext parameter from DeclContext's methods. This change cascaded down to other Decl's methods and changes to call sites started "escalating".
Timings using pre-tokenized "cocoa.h" showed only a ~1% increase in time run between and after this commit.
llvm-svn: 74506
preprocessor and initialize it early in clang-cc. This
ensures that __has_builtin works in all modes, not just
when ASTContext is around.
llvm-svn: 73319
to allow us to support generation of deferred ctors/dtors.
It looks like codegen isn't emitting a call to the dtor in
member-functions.cpp:test2, but when it does, its body should
get emitted.
llvm-svn: 71594
Changed GenerateConstantString() to take an ObjCStringLiteral (instead of a std::string). While this isn't strictly necessary, it seems cleaner and allows us to cache to "containsNonAscii" if necessary (to avoid checking in both Sema and CodeGen).
llvm-svn: 68114