Summary:
This patch refactors several instances of cast<> used in if
conditionals. Since cast<> asserts on failure, the else branch can
never be taken.
In some cases, the fix is to replace cast<> with dyn_cast<>. While
others required the removal of the conditional and some minor
refactoring.
A discussion can be seen here: http://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20190318/265044.html
Differential Revision: https://reviews.llvm.org/D59529
llvm-svn: 356441
expression inside the parentheses is a valid UTF-8 string literal.
Previously clang emitted an expression like @("abc") as a message send
to stringWithUTF8String. This commit makes clang emit the boxed
expression as a compile-time constant instead.
This commit also has the effect of silencing the nullable-to-nonnull
conversion warning clang started emitting after r317727, which
originally motivated this commit (see https://oleb.net/2018/@keypath).
rdar://problem/42684601
Differential Revision: https://reviews.llvm.org/D58729
llvm-svn: 355662
This patch includes the necessary code for converting between a fixed point type and integer.
This also includes constant expression evaluation for conversions with these types.
Differential Revision: https://reviews.llvm.org/D56900
llvm-svn: 355462
This allows substantially simplifying the expression evaluation code,
because we don't have to special-case lvalues which are actually string
literal initialization.
This currently throws away an optimization where we would avoid creating
an array APValue for string literal initialization. If we really want
to optimize this case, we should fix APValue so it can store simple
arrays more efficiently, like llvm::ConstantDataArray. This shouldn't
affect the memory usage for other string literals. (Not sure if this is
a blocker; I don't think string literal init is common enough for this
to be a serious issue, but I could be wrong.)
The change to test/CodeGenObjC/encode-test.m is a weird side-effect of
these changes: we currently don't constant-evaluate arrays in C, so the
strlen call shouldn't be folded, but lvalue string init managed to get
around that check. I this this is fine.
Fixes https://bugs.llvm.org/show_bug.cgi?id=40430 .
llvm-svn: 353569
We can't use any other string, anyway, because its type wouldn't
match the type of the PredefinedExpr.
With this change, we don't compute a "nice" name for the __func__ global
when it's used in the initializer for a constant. This doesn't seem like
a great loss, and I'm not sure how to fix it without either storing more
information in the AST, or somehow threading through the information
from ExprConstant.cpp.
This could break some situations involving BlockDecl; currently,
CodeGenFunction::EmitPredefinedLValue has some logic to intentionally
emit a string different from what Sema computed. This code skips that
logic... but that logic can't work correctly in general anyway. (For
example, sizeof(__func__) returns the wrong result.) Hopefully this
doesn't affect practical code.
Fixes https://bugs.llvm.org/show_bug.cgi?id=40313 .
Differential Revision: https://reviews.llvm.org/D56821
llvm-svn: 351766
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This adds APFixedPoint to the union of values that can be represented with an APValue.
Differential Revision: https://reviews.llvm.org/D56746
llvm-svn: 351368
Summary:
Compound literals, enums, file-scoped arrays, etc. require their
initializers and size specifiers to be constant. Wrap the initializer
expressions in a ConstantExpr so that we can easily check for this later
on.
Reviewers: rsmith, shafik
Reviewed By: rsmith
Subscribers: cfe-commits, jyknight, nickdesaulniers
Differential Revision: https://reviews.llvm.org/D53921
llvm-svn: 346455
Make the following changes to PredefinedExpr:
1. Move PredefinedExpr below StringLiteral so that it can use its definition.
2. Rename IdentType to IdentKind to be more in line with clang's conventions,
and propagate the change to its users.
3. Move the location and the IdentKind into the newly available space of
the bit-fields of Stmt.
4. Only store the function name when needed. When parsing all of Boost,
of the 1357 PredefinedExpr 919 have no function name.
Differential Revision: https://reviews.llvm.org/D53605
Reviewed By: rjmccall
llvm-svn: 345460
This patch is a part of https://reviews.llvm.org/D48456 in an attempt to split
the casting logic up into smaller patches. This contains the code for casting
from fixed point types to boolean types.
Differential Revision: https://reviews.llvm.org/D53308
llvm-svn: 345063
This patch is a part of https://reviews.llvm.org/D48456 in an attempt to
split them up. This contains the code for casting between fixed point types
and other fixed point types.
The method for converting between fixed point types is based off the convert()
method in APFixedPoint.
Differential Revision: https://reviews.llvm.org/D50616
llvm-svn: 344530
constant, don't convert the rest into a packed struct.
If an array constant has a large non-zero portion and a large zero
portion, we want to emit the first part as an array and the rest as a
zeroinitializer if possible. This fixes a memory usage regression from
r333141 when compiling PHP.
llvm-svn: 337498
It caused asserts, see PR37560.
> Use zeroinitializer for (trailing zero portion of) large array initializers
> more reliably.
>
> Clang has two different ways it emits array constants (from InitListExprs and
> from APValues), and both had some ability to emit zeroinitializer, but neither
> was able to catch all cases where we could use zeroinitializer reliably. In
> particular, emitting from an APValue would fail to notice if all the explicit
> array elements happened to be zero. In addition, for large arrays where only an
> initial portion has an explicit initializer, we would emit the complete
> initializer (which could be huge) rather than emitting only the non-zero
> portion. With this change, when the element would have a suffix of more than 8
> zero elements, we emit the array constant as a packed struct of its initial
> portion followed by a zeroinitializer constant for the trailing zero portion.
>
> In passing, I found a bug where SemaInit would sometimes walk the entire array
> when checking an initializer that only covers the first few elements; that's
> fixed here to unblock testing of the rest.
>
> Differential Revision: https://reviews.llvm.org/D47166
llvm-svn: 333067
more reliably.
Clang has two different ways it emits array constants (from InitListExprs and
from APValues), and both had some ability to emit zeroinitializer, but neither
was able to catch all cases where we could use zeroinitializer reliably. In
particular, emitting from an APValue would fail to notice if all the explicit
array elements happened to be zero. In addition, for large arrays where only an
initial portion has an explicit initializer, we would emit the complete
initializer (which could be huge) rather than emitting only the non-zero
portion. With this change, when the element would have a suffix of more than 8
zero elements, we emit the array constant as a packed struct of its initial
portion followed by a zeroinitializer constant for the trailing zero portion.
In passing, I found a bug where SemaInit would sometimes walk the entire array
when checking an initializer that only covers the first few elements; that's
fixed here to unblock testing of the rest.
Differential Revision: https://reviews.llvm.org/D47166
llvm-svn: 333044
If a variable has an initializer, codegen tries to build its value. If
the variable is large in size, building its value requires substantial
resources. It causes strange behavior from user viewpoint: compilation
of huge zero initialized arrays like:
char data_1[2147483648u] = { 0 };
consumes enormous amount of time and memory.
With this change codegen tries to determine if variable initializer is
equivalent to zero initializer. In this case variable value is not
constructed.
This change fixes PR18978.
Differential Revision: https://reviews.llvm.org/D46241
llvm-svn: 332847
Summary:
This change avoids the overhead of storing, and later crawling,
an initializer list of all zeros for arrays. When LLVM
visits this (llvm/IR/Constants.cpp) ConstantArray::getImpl()
it will scan the list looking for an array of all zero.
We can avoid the store, and short-cut the scan, by detecting
all zeros when clang builds-up the initialization representation.
This was brought to my attention when investigating PR36030
Reviewers: majnemer, rjmccall
Reviewed By: rjmccall
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D42549
llvm-svn: 324776
This commit fixes a bug in IRGen where it generates completely broken
code for __fp16 vectors on X86. For example when the following code is
compiled:
half4 hv0, hv1, hv2; // these are vectors of __fp16.
void foo221() {
hv0 = hv1 + hv2;
}
clang generates the following IR, in which two i16 vectors are added:
@hv1 = common global <4 x i16> zeroinitializer, align 8
@hv2 = common global <4 x i16> zeroinitializer, align 8
@hv0 = common global <4 x i16> zeroinitializer, align 8
define void @foo221() {
%0 = load <4 x i16>, <4 x i16>* @hv1, align 8
%1 = load <4 x i16>, <4 x i16>* @hv2, align 8
%add = add <4 x i16> %0, %1
store <4 x i16> %add, <4 x i16>* @hv0, align 8
ret void
}
To fix the bug, this commit uses the code committed in r314056, which
modified clang to promote and truncate __fp16 vectors to and from float
vectors in the AST. It also fixes another IRGen bug where a short value
is assigned to an __fp16 variable without any integer-to-floating-point
conversion, as shown in the following example:
__fp16 a;
short b;
void foo1() {
a = b;
}
@b = common global i16 0, align 2
@a = common global i16 0, align 2
define void @foo1() #0 {
%0 = load i16, i16* @b, align 2
store i16 %0, i16* @a, align 2
ret void
}
rdar://problem/20625184
Differential Revision: https://reviews.llvm.org/D40112
llvm-svn: 320215
Summary:
Convert clang::LangAS to a strongly typed enum
Currently both clang AST address spaces and target specific address spaces
are represented as unsigned which can lead to subtle errors if the wrong
type is passed. It is especially confusing in the CodeGen files as it is
not possible to see what kind of address space should be passed to a
function without looking at the implementation.
I originally made this change for our LLVM fork for the CHERI architecture
where we make extensive use of address spaces to differentiate between
capabilities and pointers. When merging the upstream changes I usually
run into some test failures or runtime crashes because the wrong kind of
address space is passed to a function. By converting the LangAS enum to a
C++11 we can catch these errors at compile time. Additionally, it is now
obvious from the function signature which kind of address space it expects.
I found the following errors while writing this patch:
- ItaniumRecordLayoutBuilder::LayoutField was passing a clang AST address
space to TargetInfo::getPointer{Width,Align}()
- TypePrinter::printAttributedAfter() prints the numeric value of the
clang AST address space instead of the target address space.
However, this code is not used so I kept the current behaviour
- initializeForBlockHeader() in CGBlocks.cpp was passing
LangAS::opencl_generic to TargetInfo::getPointer{Width,Align}()
- CodeGenFunction::EmitBlockLiteral() was passing a AST address space to
TargetInfo::getPointerWidth()
- CGOpenMPRuntimeNVPTX::translateParameter() passed a target address space
to Qualifiers::addAddressSpace()
- CGOpenMPRuntimeNVPTX::getParameterAddress() was using
llvm::Type::getPointerTo() with a AST address space
- clang_getAddressSpace() returns either a LangAS or a target address
space. As this is exposed to C I have kept the current behaviour and
added a comment stating that it is probably not correct.
Other than this the patch should not cause any functional changes.
Reviewers: yaxunl, pcc, bader
Reviewed By: yaxunl, bader
Subscribers: jlebar, jholewinski, nhaehnle, Anastasia, cfe-commits
Differential Revision: https://reviews.llvm.org/D38816
llvm-svn: 315871
the interface.
The ultimate goal here is to make it easier to do some more interesting
things in constant emission, like emit constant initializers that have
ignorable side-effects, or doing the majority of an initialization
in-place and then patching up the last few things with calls. But for
now this is mostly just a refactoring.
llvm-svn: 310964
Use variadic templates instead of relying on <cstdarg> + sentinel.
This enforces better type checking and makes code more readable.
Differential revision: https://reviews.llvm.org/D32550
llvm-svn: 302572
Our newly aggressive constant folding logic makes it possible for
CGExprConstant to see the same CompoundLiteralExpr more than once. So,
emitting a new GlobalVariable every time we see a CompoundLiteral is no
longer correct.
We had a similar issue with BlockExprs that was caught while testing
said aggressive folding, so I applied the same style of fix (see D26410)
here. If we find yet another case where this needs to happen, we should
probably refactor this so we don't have a third DenseMap+getter+setter.
As a design note: getAddrOfConstantCompoundLiteralIfEmitted is really
only intended to be called by ConstExprEmitter::EmitLValue. So,
returning a GlobalVariable* instead of a ConstantAddress costs us
effectively nothing, and saves us either a few bytes per entry in our
map or a bit of code duplication.
llvm-svn: 290661
At least the plugin used by the LibreOffice build
(<https://wiki.documentfoundation.org/Development/Clang_plugins>) indirectly
uses those members (through inline functions in LLVM/Clang include files in turn
using them), but they are not exported by utils/extract_symbols.py on Windows,
and accessing data across DLL/EXE boundaries on Windows is generally
problematic.
Differential Revision: https://reviews.llvm.org/D26671
llvm-svn: 289647
In amdgcn target, null pointers in global, constant, and generic address space take value 0 but null pointers in private and local address space take value -1. Currently LLVM assumes all null pointers take value 0, which results in incorrectly translated IR. To workaround this issue, instead of emit null pointers in local and private address space, a null pointer in generic address space is emitted and casted to local and private address space.
Tentative definition of global variables with non-zero initializer will have weak linkage instead of common linkage since common linkage requires zero initializer and does not have explicit section to hold the non-zero value.
Virtual member functions getNullPointer and performAddrSpaceCast are added to TargetCodeGenInfo which by default returns ConstantPointerNull and emitting addrspacecast instruction. A virtual member function getNullPointerValue is added to TargetInfo which by default returns 0. Each target can override these virtual functions to get target specific null pointer and the null pointer value for specific address space, and perform specific translations for addrspacecast.
Wrapper functions getNullPointer is added to CodegenModule and getTargetNullPointerValue is added to ASTContext to facilitate getting the target specific null pointers and their values.
This change has no effect on other targets except amdgcn target. Other targets can provide support of non-zero null pointer in a similar way.
This change only provides support for non-zero null pointer for C and OpenCL. Supporting for other languages will be added later incrementally.
Differential Revision: https://reviews.llvm.org/D26196
llvm-svn: 289252
When an object of class type is initialized from a prvalue of the same type
(ignoring cv qualifications), use the prvalue to initialize the object directly
instead of inserting a redundant elidable call to a copy constructor.
llvm-svn: 288866
Looks like CurFn's name outlives FunctionName, so we can just pass
StringRefs around rather than going from a StringRef to a std::string
to a const char* to a StringRef.
llvm-svn: 285873
r235815 changed CGRecordLowering::accumulateBases to ignore non-virtual
bases of size 0, which prevented adding those non-virtual bases to
CGRecordLayout's NonVirtualBases. This caused clang to assert when
CGRecordLayout::getNonVirtualBaseLLVMFieldNo was called in
EmitNullConstant. This commit fixes the bug by ignoring zero-sized
non-virtual bases in EmitNullConstant.
rdar://problem/28100139
Differential Revision: https://reviews.llvm.org/D24312
llvm-svn: 281405
Currently Clang use int32 to represent sampler_t, which have been a source of issue for some backends, because in some backends sampler_t cannot be represented by int32. They have to depend on kernel argument metadata and use IPA to find the sampler arguments and global variables and transform them to target specific sampler type.
This patch uses opaque pointer type opencl.sampler_t* for sampler_t. For each use of file-scope sampler variable, it generates a function call of __translate_sampler_initializer. For each initialization of function-scope sampler variable, it generates a function call of __translate_sampler_initializer.
Each builtin library can implement its own __translate_sampler_initializer(). Since the real sampler type tends to be architecture dependent, allowing it to be initialized by a library function simplifies backend design. A typical implementation of __translate_sampler_initializer could be a table lookup of real sampler literal values. Since its argument is always a literal, the returned pointer is known at compile time and easily optimized to finally become some literal values directly put into image read instructions.
This patch is partially based on Alexey Sotkin's work in Khronos Clang (3d4eec6162).
Differential Revision: https://reviews.llvm.org/D21567
llvm-svn: 277024
Given something like:
void *v = (void *)100;
We need to synthesize a ptrtoint operation from 100. During constant
emission, we choose i64 as the type for our constant because it
guaranteed not to drop any bits from our CharUnits representation of the
value. However, this is suboptimal for 32-bit targets: LLVM passes like
GlobalOpt will get confused by these sorts of casts resulting in
pessimization.
Instead, make sure the ptrtoint operand has a pointer-sized integer
type.
llvm-svn: 273020
These ExprWithCleanups are added for holding a RunCleanupsScope not
for destructor calls; rather, they are for lifetime marks. This requires
ExprWithCleanups to keep a bit to indicate whether it have cleanups with
side effects (e.g. dtor calls).
Differential Revision: http://reviews.llvm.org/D20498
llvm-svn: 272296