Specifically:
1. Added a missing new line when we emit a debug message saying that we are marking a global variable as constant.
2. Added debug messages that describe what is occuring when GlobalOpt is evaluating a block/function.
3. Added a debug message that says what specific constructor is being evaluated.
llvm-svn: 172247
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
Also check in a case to repeat the issue, on which 'opt -globalopt' consumes 1.6GB memory.
The big memory footprint cause is that current GlobalOpt one by one hoists and stores the leaf element constant into the global array, in each iteration, it recreates the global array initializer constant and leave the old initializer alone. This may result in many obsolete constants left.
For example: we have global array @rom = global [16 x i32] zeroinitializer
After the first element value is hoisted and installed: @rom = global [16 x i32] [ 1, 0, 0, ... ]
After the second element value is installed: @rom = global [16 x 32] [ 1, 2, 0, 0, ... ] // here the previous initializer is obsolete
...
When the transform is done, we have 15 obsolete initializers left useless.
llvm-svn: 169079
For global variables that get the same value stored into them
everywhere, GlobalOpt will replace them with a constant. The problem is
that a thread-local GlobalVariable looks like one value (the address of
the TLS var), but is different between threads.
This patch introduces Constant::isThreadDependent() which returns true
for thread-local variables and constants which depend on them (e.g. a GEP
into a thread-local array), and teaches GlobalOpt not to track such
values.
llvm-svn: 168037
getIntPtrType support for multiple address spaces via a pointer type,
and also introduced a crasher bug in the constant folder reported in
PR14233.
These commits also contained several problems that should really be
addressed before they are re-committed. I have avoided reverting various
cleanups to the DataLayout APIs that are reasonable to have moving
forward in order to reduce the amount of churn, and minimize the number
of commits that were reverted. I've also manually updated merge
conflicts and manually arranged for the getIntPtrType function to stay
in DataLayout and to be defined in a plausible way after this revert.
Thanks to Duncan for working through this exact strategy with me, and
Nick Lewycky for tracking down the really annoying crasher this
triggered. (Test case to follow in its own commit.)
After discussing with Duncan extensively, and based on a note from
Micah, I'm going to continue to back out some more of the more
problematic patches in this series in order to ensure we go into the
LLVM 3.2 branch with a reasonable story here. I'll send a note to
llvmdev explaining what's going on and why.
Summary of reverted revisions:
r166634: Fix a compiler warning with an unused variable.
r166607: Add some cleanup to the DataLayout changes requested by
Chandler.
r166596: Revert "Back out r166591, not sure why this made it through
since I cancelled the command. Bleh, sorry about this!
r166591: Delete a directory that wasn't supposed to be checked in yet.
r166578: Add in support for getIntPtrType to get the pointer type based
on the address space.
llvm-svn: 167221
Convert the internal representation of the Attributes class into a pointer to an
opaque object that's uniqued by and stored in the LLVMContext object. The
Attributes class then becomes a thin wrapper around this opaque
object. Eventually, the internal representation will be expanded to include
attributes that represent code generation options, etc.
llvm-svn: 165917
We use the enums to query whether an Attributes object has that attribute. The
opaque layer is responsible for knowing where that specific attribute is stored.
llvm-svn: 165488
This disables malloc-specific optimization when -fno-builtin (or -ffreestanding)
is specified. This has been a problem for a long time but became more severe
with the recent memory builtin improvements.
Since the memory builtin functions are used everywhere, this required passing
TLI in many places. This means that functions that now have an optional TLI
argument, like RecursivelyDeleteTriviallyDeadFunctions, won't remove dead
mallocs anymore if the TLI argument is missing. I've updated most passes to do
the right thing.
Fixes PR13694 and probably others.
llvm-svn: 162841
might be deliberate "one time" leaks, so that leak checkers can find them.
This is a reapply of r160602 with the fix that this time I'm committing the
code I thought I was committing last time; the I->eraseFromParent() goes
*after* the break out of the loop.
llvm-svn: 160664
r160529 that was subsequently reverted. The fix was to not call
GV->eraseFromParent() right before the caller does the same. The existing
testcases already caught this bug if run under valgrind.
llvm-svn: 160602
Original commit message:
If a constant or a function has linkonce_odr linkage and unnamed_addr, mark it
hidden. Being linkonce_odr guarantees that it is available in every dso that
needs it. Being a constant/function with unnamed_addr guarantees that the
copies don't have to be merged.
llvm-svn: 159272
hidden. Being linkonce_odr guarantees that it is available in every dso that
needs it. Being a constant/function with unnamed_addr guarantees that the
copies don't have to be merged.
llvm-svn: 159136
This allows the user/front-end to specify a model that is better
than what LLVM would choose by default. For example, a variable
might be declared as
@x = thread_local(initialexec) global i32 42
if it will not be used in a shared library that is dlopen'ed.
If the specified model isn't supported by the target, or if LLVM can
make a better choice, a different model may be used.
llvm-svn: 159077
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120130/136146.html
Implemented CaseIterator and it solves almost all described issues: we don't need to mix operand/case/successor indexing anymore. Base iterator class is implemented as a template since it may be initialized either from "const SwitchInst*" or from "SwitchInst*".
ConstCaseIt is just a read-only iterator.
CaseIt is read-write iterator; it allows to change case successor and case value.
Usage of iterator allows totally remove resolveXXXX methods. All indexing convertions done automatically inside the iterator's getters.
Main way of iterator usage looks like this:
SwitchInst *SI = ... // intialize it somehow
for (SwitchInst::CaseIt i = SI->caseBegin(), e = SI->caseEnd(); i != e; ++i) {
BasicBlock *BB = i.getCaseSuccessor();
ConstantInt *V = i.getCaseValue();
// Do something.
}
If you want to convert case number to TerminatorInst successor index, just use getSuccessorIndex iterator's method.
If you want initialize iterator from TerminatorInst successor index, use CaseIt::fromSuccessorIndex(...) method.
There are also related changes in llvm-clients: klee and clang.
llvm-svn: 152297
they'll be simple enough to simulate, and to reduce the chance we'll encounter
equal but different simple pointer constants.
This removes the symptoms from PR11352 but is not a full fix. A proper fix would
either require a guarantee that two constant objects we simulate are folded
when equal, or a different way of handling equal pointers (ie., trying a
constantexpr icmp on them to see whether we know they're equal or non-equal or
unsure).
llvm-svn: 151093
useful to represent a variable that is const in the source but can't be constant
in the IR because of a non-trivial constructor. If globalopt evaluates the
constructor, and there was an invariant.start with no matching invariant.end
possible, it will mark the global constant afterwards.
llvm-svn: 150794
GlobalOpt runs early in the pipeline (before inlining) and complex class
hierarchies often introduce bitcasts or GEPs which weren't optimized away.
Teach it to ignore side-effect free instructions instead of depending on
other passes to remove them.
llvm-svn: 150174
* Most of the transforms come through intact by having each transformed load or
store copy the ordering and synchronization scope of the original.
* The transform that turns a global only accessed in main() into an alloca
(since main is non-recursive) with a store of the initial value uses an
unordered store, since it's guaranteed to be the first thing to happen in main.
(Threads may have started before main (!) but they can't have the address of a
function local before the point in the entry block we insert our code.)
* The heap-SRoA transforms are disabled in the face of atomic operations. This
can probably be improved; it seems odd to have atomic accesses to an alloca
that doesn't have its address taken.
AnalyzeGlobal keeps track of the strongest ordering found in any use of the
global. This is more information than we need right now, but it's cheap to
compute and likely to be useful.
llvm-svn: 149847
The purpose of refactoring is to hide operand roles from SwitchInst user (programmer). If you want to play with operands directly, probably you will need lower level methods than SwitchInst ones (TerminatorInst or may be User). After this patch we can reorganize SwitchInst operands and successors as we want.
What was done:
1. Changed semantics of index inside the getCaseValue method:
getCaseValue(0) means "get first case", not a condition. Use getCondition() if you want to resolve the condition. I propose don't mix SwitchInst case indexing with low level indexing (TI successors indexing, User's operands indexing), since it may be dangerous.
2. By the same reason findCaseValue(ConstantInt*) returns actual number of case value. 0 means first case, not default. If there is no case with given value, ErrorIndex will returned.
3. Added getCaseSuccessor method. I propose to avoid usage of TerminatorInst::getSuccessor if you want to resolve case successor BB. Use getCaseSuccessor instead, since internal SwitchInst organization of operands/successors is hidden and may be changed in any moment.
4. Added resolveSuccessorIndex and resolveCaseIndex. The main purpose of these methods is to see how case successors are really mapped in TerminatorInst.
4.1 "resolveSuccessorIndex" was created if you need to level down from SwitchInst to TerminatorInst. It returns TerminatorInst's successor index for given case successor.
4.2 "resolveCaseIndex" converts low level successors index to case index that curresponds to the given successor.
Note: There are also related compatability fix patches for dragonegg, klee, llvm-gcc-4.0, llvm-gcc-4.2, safecode, clang.
llvm-svn: 149481
This adds the 'resume' instruction class, IR parsing, and bitcode reading and
writing. The 'resume' instruction resumes propagation of an existing (in-flight)
exception whose unwinding was interrupted with a 'landingpad' instruction (to be
added later).
llvm-svn: 136589
all over the place in different styles and variants. Standardize on two
preferred entrypoints: one that takes a StructType and ArrayRef, and one that
takes StructType and varargs.
In cases where there isn't a struct type convenient, we now add a
ConstantStruct::getAnon method (whose name will make more sense after a few
more patches land).
It would be "really really nice" if the ConstantStruct::get and
ConstantVector::get methods didn't make temporary std::vectors.
llvm-svn: 133412
variable. Noticed by inspection.
Simulate memset in EvaluateFunction where the target of the memset and the
value we're setting are both the null value. Fixes PR10047!
llvm-svn: 132288
mean that it has to be ConstantArray of ConstantStruct. We might have
ConstantAggregateZero, at either level, so don't crash on that.
Also, semi-deprecate the sentinal value. The linker isn't aware of sentinals so
we end up with the two lists appended, each with their "sentinals" on them.
Different parts of LLVM treated sentinals differently, so make them all just
ignore the single entry and continue on with the rest of the list.
llvm-svn: 129307
(if available) as we go so that we get simple constantexprs not insane ones.
This fixes the failure of clang/test/CodeGenCXX/virtual-base-ctor.cpp
that the previous iteration of this patch had.
llvm-svn: 121111
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize
the pass's dependencies.
Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.
I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems
with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass
registration/creation, please send the testcase to me directly.
llvm-svn: 116820
with a fix for self-hosting
rotate CallInst operands, i.e. move callee to the back
of the operand array
the motivation for this patch are laid out in my mail to llvm-commits:
more efficient access to operands and callee, faster callgraph-construction,
smaller compiler binary
llvm-svn: 101465
with a fix
rotate CallInst operands, i.e. move callee to the back
of the operand array
the motivation for this patch are laid out in my mail to llvm-commits:
more efficient access to operands and callee, faster callgraph-construction,
smaller compiler binary
llvm-svn: 101397
of the operand array
the motivation for this patch are laid out in my mail to llvm-commits:
more efficient access to operands and callee, faster callgraph-construction,
smaller compiler binary
llvm-svn: 101364
- TryToOptimizeStoreOfMallocToGlobal should check if TargetData is available and bail out if it is not. The transformations being done requires TD.
llvm-svn: 101285