Address calculation for gather/scather in vectorized code can incur a
significant cost making vectorization unbeneficial. Add infrastructure to add
cost.
Tests and cost model for targets will be in follow-up commits.
radar://14351991
llvm-svn: 186187
MF is normally initialized in AsmPrinter::SetupMachineFunction, but if the file
contains only globals (no functions), then we need this to be initialized
because, when encountering an error, lowerConstant() references it.
This should fix the non-deterministic failures of
test/CodeGen/X86/nonconst-static-iv.ll, etc.
llvm-svn: 186068
When computing currently-live registers, the register scavenger excludes undef
uses. As a result, undef uses are ignored when computing the restore points of
registers spilled into the emergency slots. While the register scavenger
normally excludes from consideration, when scavenging, registers used by the
current instruction, we need to not exclude undef uses. Otherwise, we might end
up requiring more emergency spill slots than we have (in the case where the
undef use *is* the currently-spilled register).
Another bug found by llvm-stress.
llvm-svn: 186067
Change the informal convention of DBG_VALUE machine instructions so that
we can express a register-indirect address with an offset of 0.
The old convention was that a DBG_VALUE is a register-indirect value if
the offset (operand 1) is nonzero. The new convention is that a DBG_VALUE
is register-indirect if the first operand is a register and the second
operand is an immediate. For plain register values the combination reg,
reg is used. MachineInstrBuilder::BuildMI knows how to build the new
DBG_VALUES.
rdar://problem/13658587
llvm-svn: 185966
Because integer BUILD_VECTOR operands may have a larger type than the result's
vector element type, and all operands must have the same type, when widening a
BUILD_VECTOR node by adding UNDEFs, we cannot use the vector element type, but
rather must use the type of the existing operands.
Another bug found by llvm-stress.
llvm-svn: 185960
in-tree implementations of TargetLoweringBase::isFMAFasterThanMulAndAdd in
order to resolve the following issues with fmuladd (i.e. optional FMA)
intrinsics:
1. On X86(-64) targets, ISD::FMA nodes are formed when lowering fmuladd
intrinsics even if the subtarget does not support FMA instructions, leading
to laughably bad code generation in some situations.
2. On AArch64 targets, ISD::FMA nodes are formed for operations on fp128,
resulting in a call to a software fp128 FMA implementation.
3. On PowerPC targets, FMAs are not generated from fmuladd intrinsics on types
like v2f32, v8f32, v4f64, etc., even though they promote, split, scalarize,
etc. to types that support hardware FMAs.
The function has also been slightly renamed for consistency and to force a
merge/build conflict for any out-of-tree target implementing it. To resolve,
see comments and fixed in-tree examples.
llvm-svn: 185956
When folding sub x, x (and other similar constructs), where x is a vector, the
result is a vector of zeros. After type legalization, make sure that the input
zero elements have a legal type. This type may be larger than the result's
vector element type.
This was another bug found by llvm-stress.
llvm-svn: 185949
This patch broke `make check-asan` on Mac, causing ld warnings like the following one:
ld: warning: direct access in __GLOBAL__I_a to global weak symbol
___asan_mapping_scale means the weak symbol cannot be overridden at
runtime. This was likely caused by different translation units being
compiled with different visibility settings.
The resulting test binaries crashed with incorrect ASan warnings.
llvm-svn: 185923
The Mach-O linker has been able to support the weak-def bit on any symbol for
quite a while now. The compiler however continued to place these symbols into a
"coal" section, which required the linker to map them back to the base section
name.
Replace the sections like this:
__TEXT/__textcoal_nt instead use __TEXT/__text
__TEXT/__const_coal instead use __TEXT/__const
__DATA/__datacoal_nt instead use __DATA/__data
<rdar://problem/14265330>
llvm-svn: 185872
Since the pool indexes are necessarily sequential and contiguous, just
insert things in the right place rather than having to sort the sequence
after the fact.
No functionality change.
llvm-svn: 185842
This fixes a bug (found by llvm-stress) in
DAGTypeLegalizer::PromoteIntRes_BUILD_VECTOR where it assumed that the result
type would always be larger than the original operands. This is not always
true, however, with boolean vectors. For example, promoting a node of type v8i1
(where the operands will be of type i32, the type to which i1 is promoted) will
yield a node with a result vector element type of i16 (and operands of type
i32). As a result, we cannot blindly assume that we can ANY_EXTEND the operands
to the result type.
llvm-svn: 185794
This fixes an oversight that Intrinsic::nearbyint was not being mapped to
ISD::FNEARBYINT (thus fixing the over-optimistic cost we were assigning to
nearbyint calls for some targets).
llvm-svn: 185783
Obviously the personality function should be emitted as language handler
instead of the hard coded _GCC_specific_handler. The language specific
data must be placed after the unwind information therefore it must not
be emitted into a separate section.
Reviewed by Charles Davis and Nico Rieck.
llvm-svn: 185761
ReduceLoadWidth unconditionally drops extensions from loads. Limit it to the
case when all of the bits the extension would otherwise produce are dropped by
the shrink. It would be possible to shrink the load in more cases by merging
the extensions, but this isn't trivial and a very rare case. I left a TODO for
that case.
Fixes PR16551.
llvm-svn: 185755
This prevents the emission of DAG-generated vreg definitions after a
tail call be dropping them entirely (on the grounds that nothing could
use them anyway, and they interfere with O0 CodeGen).
llvm-svn: 185754
The stack coloring pass has code to delete stores and loads that become
trivially dead after coloring. Extend it to cope with single instructions
that copy from one frame index to another.
The testcase happens to show an example of this kicking in at the moment.
It did occur in Real Code too though.
llvm-svn: 185705
The stack coloring pass renumbered frame indexes with a loop of the form:
for each frame index FI
for each instruction I that uses FI
for each use of FI in I
rename FI to FI'
This caused problems if an instruction used two frame indexes F0 and F1
and if F0 was renamed to F1 and F1 to F2. The first time we visited the
instruction we changed F0 to F1, then we changed both F1s to F2.
In other words, the problem was that SSRefs recorded which instructions
used an FI, but not which MachineOperands and MachineMemOperands within
that instruction used it.
This is easily fixed for MachineOperands by walking the instructions
once and processing each operand in turn. There's already a loop to
do that for dead store elimination, so it seemed more efficient to
fuse the two at the block level.
MachineMemOperands are more tricky because they can be shared between
instructions. The patch handles them by making SSRefs an array of
MachineMemOperands rather than an array of MachineInstrs. We might end
up processing the same MachineMemOperand twice, but that's OK because
we always know from the SSRefs index what the original frame index was.
llvm-svn: 185703
SystemZ wants normal register scavenging slots, as close to the stack or
frame pointer as possible. The only reason it was using custom code was
because PrologEpilogInserter assumed an x86-like layout, where the frame
pointer is at the opposite end of the frame from the stack pointer.
This meant that when frame pointer elimination was disabled,
the slots ended up being as close as possible to the incoming
stack pointer, which is the opposite of what we want on SystemZ.
This patch adds a new knob to say which layout is used and converts
SystemZ to use target-independent scavenging slots. It's one of the pieces
needed to support frame-to-frame MVCs, where two slots might be required.
The ABI requires us to allocate 160 bytes for calls, so one approach
would be to use that area as temporary spill space instead. It would need
some surgery to make sure that the slot isn't live across a call though.
I stuck to the "isFPCloseToIncomingSP - ..." style comment on the
"do what the surrounding code does" principle. The FP case is already
covered by several Systemz/frame-* tests, which fail without the
PrologueEpilogueInserter change, so no new ones are needed.
No behavioural change intended.
llvm-svn: 185696
r179494 switched to using the object file info to retrieve the default text
section for some MC streamers. It is possible that initializing an MC
streamer can request sections before the object file info is initialized
when the AutoInitSections flag is set on the streamer.
llvm-svn: 185670
Stop using the ISD::EXCEPTIONADDR and ISD::EHSELECTION when lowering
landing pad arguments. These nodes were previously legalized into
CopyFromReg nodes, but that never worked properly because the
CopyFromReg node weren't guaranteed to be scheduled at the top of the
basic block.
This meant the exception pointer and selector registers could be
clobbered before being copied to a virtual register.
This patch copies the two physical registers to virtual registers at
the beginning of the basic block, and lowers the landingpad instruction
directly to two CopyFromReg nodes reading the *virtual* registers. This
is safe because virtual registers don't get clobbered.
A future patch will remove the ISD::EXCEPTIONADDR and ISD::EHSELECTION
nodes.
llvm-svn: 185617
Compute the insertion point from the end of the basic block instead of
skipping labels from the front.
This caused failures in landing pads when live-in copies where inserted
before instruction selection.
llvm-svn: 185616
Stop using the ISD::EXCEPTIONADDR and ISD::EHSELECTION when lowering
landing pad arguments. These nodes were previously legalized into
CopyFromReg nodes, but that never worked properly because the
CopyFromReg node weren't guaranteed to be scheduled at the top of the
basic block.
This meant the exception pointer and selector registers could be
clobbered before being copied to a virtual register.
This patch copies the two physical registers to virtual registers at
the beginning of the basic block, and lowers the landingpad instruction
directly to two CopyFromReg nodes reading the *virtual* registers. This
is safe because virtual registers don't get clobbered.
A future patch will remove the ISD::EXCEPTIONADDR and ISD::EHSELECTION
nodes.
llvm-svn: 185595
Correctly handles ref_addr depending on the Dwarf version. Emit Dwarf with
version from module flag.
TODO: turn on/off features depending on the Dwarf version.
llvm-svn: 185484
This allows getDebugThreadLocalSymbol to return a generic MCExpr
instead of just a MCSymbolRefExpr.
This is in preparation for supporting debug info for TLS variables
on PowerPC, where we need to describe the variable location using
a more complex expression than just MCSymbolRefExpr.
llvm-svn: 185460
This changes the AddrPool infrastructure to enable it to hold
generic MCExpr expressions, not just MCSymbolRefExpr.
This is in preparation for supporting debug info for TLS variables
on PowerPC, where we need to describe the variable location using
a more complex expression than just MCSymbolRefExpr.
llvm-svn: 185459
This partially reverts r185202 and restores DIELabel to hold plain
MCSymbol references. Instead, we add a new subclass DIEExpr of
DIEValue that can hold generic MCExpr references.
This is in preparation for supporting debug info for TLS variables
on PowerPC, where we need to describe the variable location using
a more complex expression than just MCSymbolRefExpr.
llvm-svn: 185458
"Remove floating point computations form SpillPlacement.cpp."
These commits caused test failures in lencod on clang-native-arm-lnt.
I suspect these changes are only exposing an existing issue, but
reverting anyway to keep the bots passing while we investigate.
llvm-svn: 185447
This is dead code since PIC16 was removed in 2010. The result was an odd mix,
where some parts would carefully pass it along and others would assert it was
zero (most of the object streamer for example).
llvm-svn: 185436
DAGCombiner was counting all uses of a load node when considering whether it's
worth combining into a zextload. Really, it wants to ignore the chain and just
count real uses.
rdar://problem/13896307
llvm-svn: 185419
Patch by Benjamin Kramer!
Use the BlockFrequency class instead of floats in the Hopfield network
computations. This rescales the node Bias field from a [-2;2] float
range to two block frequencies BiasN and BiasP pulling in opposite
directions. This construct has a more predictable behavior when block
frequencies saturate.
The per-node scaling factors are no longer necessary, assuming the block
frequencies around a bundle are consistent.
This patch can cause the register allocator to make different spilling
decisions. The differences should be small.
llvm-svn: 185393
Restrict the current TLS support to X86 ELF for now. Test that we don't
produce it on PPC & we can flesh that test case out with the right thing
once someone implements it.
llvm-svn: 185389
When phis get lowered, destination copies are inserted using an iterator that is
determined once for all phis in the block, which BuildMI interprets as a request
to insert an instruction directly before the iterator. In the case of a cyclic
phi, source copies may also be inserted directly before this iterator, which can
cause source copies to be inserted before destination copies. The fix is to keep
an iterator to the last phi and then advance it while lowering each phi in order
to insert destination copies directly after the phis.
llvm-svn: 185363
Based on GCC's output for TLS variables (OP_constNu, x@dtpoff,
OP_lo_user), this implements debug info support for TLS in ELF. Verified
that this output is correct/sufficient on Linux (using gold - if you're
using binutils-ld, you'll need something with the fix for
http://sourceware.org/bugzilla/show_bug.cgi?id=15685 in it).
Support on non-ELF is sort of "arbitrary" at the moment - if Apple folks
want to discuss (or just go ahead & implement) how this should work in
MachO, etc, I'm open.
llvm-svn: 185203
should expand ATOMIC_CMP_SWAP nodes the same way that it does for ATOMIC_SWAP.
Since ATOMIC_LOADs on some targets (e.g. older ARM variants) get legalized to
ATOMIC_CMP_SWAPs, the missing case had been causing i64 atomic loads to crash
during isel.
<rdar://problem/14074644>
llvm-svn: 185186
No functionality change.
It should suffice to check the type of a debug info metadata, instead of
calling Verify. For cases where we know the type of a DI metadata, use
assert.
Also update testing cases to make them conform to the format of DI classes.
llvm-svn: 185135