When handling 'if' statements, we crash if the condition and the consequent
branch are spanned by a single macro expansion.
The crash occurs because of a sanity 'reset' in popRegions(): if an expansion
exactly spans an entire region, we set MostRecentLocation to the start of the
expansion (its 'include location'). This ensures we don't handleFileExit()
ourselves out of the expansion before we're done processing all of the regions
within it. This is tested in test/CoverageMapping/macro-expressions.c.
This causes a problem when an expansion spans both the condition and the
consequent branch of an 'if' statement. MostRecentLocation is updated to the
start of the 'if' statement in popRegions(), so the file for the expansion
isn't exited by the time we're done handling the statement. We then crash with
'fatal: File exit not handled before popRegions'.
The fix for this is to detect these kinds of expansions, and conservatively
update MostRecentLocation to the end of expansion region containing the
conditional. I've added tests to make sure we don't have the same problem with
other kinds of statements.
rdar://problem/23630316
Differential Revision: http://reviews.llvm.org/D16934
llvm-svn: 260129
Temporarily relax check in test to avoid
breakage for format change in LLVM side. Once that is
done, the test case will be retightened.
llvm-svn: 259955
This patch changes cc1 option -fprofile-instr-generate to an enum option
-fprofile-instrument={clang|none}. It also changes cc1 options
-fprofile-instr-generate= to -fprofile-instrument-path=.
The driver level option -fprofile-instr-generate and -fprofile-instr-generate=
remain intact. This change will pave the way to integrate new PGO
instrumentation in IR level.
Review: http://reviews.llvm.org/D16730
llvm-svn: 259811
This is one last remaining instrumentatation related structure
that needs to be migrate to use the centralized template
definition. With this change, instrumentation code
related to coverage module header will be kept in sync
with the coverage mapping reader. The remaining code
which makes implicit assumption about covmap control
structure layout in the the lowering pass will cleaned
up in a different patch. This patch is not intended to
have no functional change.
llvm-svn: 256714
(test case update)
Profile symbols have long prefixes which waste space and creating pressure for linker.
This patch shortens the prefixes to minimal length without losing verbosity.
Differential Revision: http://reviews.llvm.org/D15503
llvm-svn: 255576
(This is part-2 of the patch -- fixing test cases)
Before the patch, -fprofile-instr-generate compile will fail
if no integrated-as is specified when the file contains
any static functions (the -S output is also invalid).
This patch fixed the issue. With the change, the index format
version will be bumped up by 1. Backward compatibility is
preserved with this change.
Differential Revision: http://reviews.llvm.org/D15243
llvm-svn: 255366
This was calling FD->hasBody(), meaning "Does the function that this
decl refers to have a body?", rather than
FD->doesThisDeclarationHaveABody(), meaning "Is this decl a
non-deleted definition?".
We might want to consider renaming these APIs :/
llvm-svn: 243360
The catch keyword isn't really part of a region, so it's fairly
meaningless to extend into it. This was usually harmless, but it could
crash when catch blocks involved macros in strange ways.
llvm-svn: 243066
We were propagating the coverage map into the body of an if statement,
but not into the condition thereafter. This is fine as long as the two
locations are in the same virtual file, but they won't be when the
"if" part of the statement is from a macro and the condition is not.
llvm-svn: 239803
The issue I was trying to solve in r236547 was about built-in macros,
but I disabled coverage in all system macros. This is actually a bit
of overkill, and makes the display of coverage around system macros
degrade unnecessarily. Instead, limit this to builtins specifically.
llvm-svn: 237397
It doesn't make much sense to try to show coverage inside system
macros, and source locations in builtins confuses the coverage
mapping. Just avoid doing this.
Fixes an assert that fired when a __block storage specifier starts a
region.
llvm-svn: 236547
This fixes a crash when we're emitting coverage and a macro appears
between two binary conditional operators, ie, "foo ?: MACRO ?: bar",
and fixes the interaction of macros and conditional operators in
general.
llvm-svn: 235793
We try to use the member variable "FuncName" here, but we've also used
that name as a parameter. This ends with us getting the length of the
function name wrong when we generate the coverage data.
llvm-svn: 235565
When we try to find the end loc for a token, we have to re-lex the
token. This was running into a problem when we'd store the end loc of
a macro's coverage region, since we wouldn't actually be at the
beginning of a token when we tried to re-lex it, leading us to do
silly things (and eventually assert) when whitespace or comments
followed.
This pushes our use of getPreciseTokenLocEnd earlier, so that we won't
call it when it doesn't make sense to. It also removes an unnecessary
adjustment by 1 that was working around this problem in some cases.
llvm-svn: 233169
When generating coverage maps, we were traversing the body as if it
were part of the parent function, but this doesn't make sense since
we're currently counting lambdas as separate functions.
llvm-svn: 230304
When tools like llvm-cov show regions, it's much easier to understand
what's happening if the condition of an if shows a counter as well as
the body.
llvm-svn: 229813
The coverage mapping generation code previously generated a large
number of redundant coverage regions and then tried to merge similar
ones back together. This then relied on some awkward heuristics to
prevent combining of regions that were importantly different but
happened to have the same count. The end result was inefficient and
hard to follow.
Now, we more carefully create the regions we actually want. This makes
it much easier to create regions at precise locations as well as
making the basic approach quite a bit easier to follow. There's still
a fair bit of complexity here dealing with included code and macro
expansions, but that's pretty hard to avoid without significantly
reducing the quality of data we provide.
I had to modify quite a few tests where the source ranges became more
precise or the old ranges seemed to be wrong anyways, and I've added
quite a few new tests since a large number of constructs didn't seem
to be tested before.
llvm-svn: 229748
This is a test for the llvm change in r228793. We need to make sure
that names referred to by coverage end up in the right section, or the
coverage tools won't work.
llvm-svn: 228794
We don't emit any coverage mapping for uncovered functions that come
from system headers, but we were creating a GlobalVariable with each
of their names. This is wasteful since the linker will need to dead
strip the unused symbols, and it can lead to issues when merging
coverage with others TUs that do have coverage for those functions.
llvm-svn: 226764
We include unused functions and methods in -fcoverage-mapping so that
we can differentiate between uninstrumented and unused. This can cause
problems for uninstantiated templates though, since they may involve
an incomplete type that can't be mangled. This shows up in things like
libc++'s <unordered_map> and makes coverage unusable.
Avoid the issue by skipping uninstantiated methods of a templated
class.
llvm-svn: 222204
When generating coverage regions, we were doing a linear search
through the existing regions in order to try to merge related ones.
Most of the time this would find what it was looking for in a small
number of steps and it wasn't a big deal, but in cases with many
regions and few mergeable ones this leads to an absurd compile time
regression.
This changes the coverage mapping logic to do a single sort and then
merge as we go, which is a bit simpler and about 100 times faster.
I've also added FIXMEs on a couple of behaviours that seem a little
suspect, while keeping them behaving as they were - I'll look into
these soon.
The test changes here are mostly tedious reorganization, because the
ordering of regions we output has become slightly (but not completely)
more consistent from the almost completely arbitrary ordering we got
before.
llvm-svn: 218738
The profile data format was recently updated and the new indexing api
requires the code coverage tool to know the function's hash as well
as the function's name to get the execution counts for a function.
Differential Revision: http://reviews.llvm.org/D4995
llvm-svn: 216208
Change the lit RUN commands for 3 tests to use the following pattern
"FileCheck -input-file ..." instead of "cat ... | FileCheck ..." as
suggested by Justin Bogner.
llvm-svn: 216085
This patch adds the tests for the coverage mapping generation.
Most of the tests check the mapping regions produced by
the generator, and one checks the llvm IR.
Differential Revision: http://reviews.llvm.org/D4847
llvm-svn: 215995
I reverted one of the added tests from r215261 in r215274, since it
was failing on quite a few bots. It looks like this wasn't sufficient,
as we're still getting failures on windows, like the following:
http://bb.pgr.jp/builders/ninja-x64-msvc-RA-centos6/builds/5378
I'm reverting this entire commit so the bots aren't blocked on these
failures.
This reverts commit r215261.
llvm-svn: 215278
The (new) CoverageMapping/macroparams.c test is failing on a number of
buildbots. Reverting it until Alex can investigate and fix the test.
llvm-svn: 215274
This patch adds the tests for the coverage mapping generation.
Most of the tests check the mapping regions produced by
the generator, and one checks the llvm IR.
Differential Revision: http://reviews.llvm.org/D4793
llvm-svn: 215261