This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
Rename the DEBUG_TYPE to match the names of corresponding passes where
it makes sense. Also establish the pattern of simply referencing
DEBUG_TYPE instead of repeating the passname where possible.
llvm-svn: 303921
Delete MachineInstr::getIterator(), since the term "iterator" is
overloaded when talking about MachineInstr.
- Downcast to ilist_node in iplist::getNextNode() and getPrevNode() so
that ilist_node::getIterator() is still available.
- Add it back as MachineInstr::getInstrIterator(). This matches the
naming in MachineBasicBlock.
- Add MachineInstr::getBundleIterator(). This is explicitly called
"bundle" (not matching MachineBasicBlock) to disintinguish it clearly
from ilist_node::getIterator().
- Update all calls. Some of these I switched to `auto` to remove
boiler-plate, since the new name is clear about the type.
There was one call I updated that looked fishy, but it wasn't clear what
the right answer was. This was in X86FrameLowering::inlineStackProbe(),
added in r252578 in lib/Target/X86/X86FrameLowering.cpp. I opted to
leave the behaviour unchanged, but I'll reply to the original commit on
the list in a moment.
llvm-svn: 261504
with the new pass manager, and no longer relying on analysis groups.
This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:
- FunctionAAResults is a type-erasing alias analysis results aggregation
interface to walk a single query across a range of results from
different alias analyses. Currently this is function-specific as we
always assume that aliasing queries are *within* a function.
- AAResultBase is a CRTP utility providing stub implementations of
various parts of the alias analysis result concept, notably in several
cases in terms of other more general parts of the interface. This can
be used to implement only a narrow part of the interface rather than
the entire interface. This isn't really ideal, this logic should be
hoisted into FunctionAAResults as currently it will cause
a significant amount of redundant work, but it faithfully models the
behavior of the prior infrastructure.
- All the alias analysis passes are ported to be wrapper passes for the
legacy PM and new-style analysis passes for the new PM with a shared
result object. In some cases (most notably CFL), this is an extremely
naive approach that we should revisit when we can specialize for the
new pass manager.
- BasicAA has been restructured to reflect that it is much more
fundamentally a function analysis because it uses dominator trees and
loop info that need to be constructed for each function.
All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.
The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.
This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.
Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.
One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.
Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.
Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.
Differential Revision: http://reviews.llvm.org/D12080
llvm-svn: 247167
MIOperands/ConstMIOperands are classes iterating over the MachineOperand
of a MachineInstr, however MachineInstr::mop_iterator does the same
thing.
I assume these two iterators exist to have a uniform interface to
iterate over the operands of a machine instruction bundle and a single
machine instruction. However in practice I find it more confusing to have 2
different iterator classes, so this patch transforms (nearly all) the
code to use mop_iterators.
The only exception being MIOperands::anlayzePhysReg() and
MIOperands::analyzeVirtReg() still needing an equivalent, I leave that
as an exercise for the next patch.
Differential Revision: http://reviews.llvm.org/D9932
This version is slightly modified from the proposed revision in that it
introduces MachineInstr::getOperandNo to avoid the extra counting
variable in the few loops that previously used MIOperands::getOperandNo.
llvm-svn: 238539
shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.
Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.
llvm-svn: 214838
define below all header includes in the lib/CodeGen/... tree. While the
current modules implementation doesn't check for this kind of ODR
violation yet, it is likely to grow support for it in the future. It
also removes one layer of macro pollution across all the included
headers.
Other sub-trees will follow.
llvm-svn: 206837
operator* on the by-operand iterators to return a MachineOperand& rather than
a MachineInstr&. At this point they almost behave like normal iterators!
Again, this requires making some existing loops more verbose, but should pave
the way for the big range-based for-loop cleanups in the future.
llvm-svn: 203865
Based on CR feedback from r162301 and Craig Topper's refactoring in r162347
here are a few other places that could use the same API (& in one instance drop
a Function.h dependency).
llvm-svn: 162367
Implicitly defined virtual registers can simply have the <undef> bit set
on all uses, and copies can be turned into implicit defs recursively.
Physical registers are a bit trickier. We handle the common case where a
physreg def is used by a nearby instruction in the same basic block. For
more complicated cases, just leave the IMPLICIT_DEF instruction in.
llvm-svn: 159149
No functional change intended.
Sorry for the churn. The iterator classes are supposed to help avoid
giant commits like this one in the future. The TableGen-produced
register lists are getting quite large, and it may be necessary to
change the table representation.
This makes it possible to do so without changing all clients (again).
llvm-svn: 157854
Creates a configurable regalloc pipeline.
Ensure specific llc options do what they say and nothing more: -reglloc=... has no effect other than selecting the allocator pass itself. This patch introduces a new umbrella flag, "-optimize-regalloc", to enable/disable the optimizing regalloc "superpass". This allows for example testing coalscing and scheduling under -O0 or vice-versa.
When a CodeGen pass requires the MachineFunction to have a particular property, we need to explicitly define that property so it can be directly queried rather than naming a specific Pass. For example, to check for SSA, use MRI->isSSA, not addRequired<PHIElimination>.
CodeGen transformation passes are never "required" as an analysis
ProcessImplicitDefs does not require LiveVariables.
We have a plan to massively simplify some of the early passes within the regalloc superpass.
llvm-svn: 150226
This boils down to using MachineOperand::readsReg() more.
This fixes PR11829 where a use ended up after the first def when
lowering REG_SEQUENCE instructions involving IMPLICIT_DEFs.
llvm-svn: 148996
Code like that would only be produced by bugpoint, but we should still
handle it correctly.
When a register is defined by a REG_SEQUENCE of undefs, the register
itself is undef. Previously, we would create a register with uses but no
defs.
Fixes part of PR10520.
llvm-svn: 136401
perform initialization without static constructors AND without explicit initialization
by the client. For the moment, passes are required to initialize both their
(potential) dependencies and any passes they preserve. I hope to be able to relax
the latter requirement in the future.
llvm-svn: 116334
EXTRACT_SUBREG no longer appears as a machine instruction. Use COPY instead.
Add isCopy() checks in many places using isMoveInstr() and isExtractSubreg().
The isMoveInstr hook will be removed later.
llvm-svn: 107879
INSERT_SUBREG will now only appear in SSA machine instructions.
Fix the handling of partial redefs in ProcessImplicitDefs. This is now relevant
since partial redef COPY instructions appear.
llvm-svn: 107726
A virtual register can be used before it is defined in the same MBB if the MBB
is part of a loop. Teach the implicit-def pass about this case.
llvm-svn: 96279
into TargetOpcodes.h. #include the new TargetOpcodes.h
into MachineInstr. Add new inline accessors (like isPHI())
to MachineInstr, and start using them throughout the
codebase.
llvm-svn: 95687